Enhanced antibody-antigen structure prediction from molecular docking using AlphaFold2

对接(动物) 诱饵 假阳性悖论 计算机科学 计算生物学 抗原 人工智能 机器学习 生物 医学 免疫学 生物化学 护理部 受体
作者
Francis Gaudreault,Christopher R. Corbeil,Traian Sulea
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1)
标识
DOI:10.1038/s41598-023-42090-5
摘要

Abstract Predicting the structure of antibody-antigen complexes has tremendous value in biomedical research but unfortunately suffers from a poor performance in real-life applications. AlphaFold2 (AF2) has provided renewed hope for improvements in the field of protein–protein docking but has shown limited success against antibody-antigen complexes due to the lack of co-evolutionary constraints. In this study, we used physics-based protein docking methods for building decoy sets consisting of low-energy docking solutions that were either geometrically close to the native structure (positives) or not (negatives). The docking models were then fed into AF2 to assess their confidence with a novel composite score based on normalized pLDDT and pTMscore metrics after AF2 structural refinement. We show benefits of the AF2 composite score for rescoring docking poses both in terms of (1) classification of positives/negatives and of (2) success rates with particular emphasis on early enrichment. Docking models of at least medium quality present in the decoy set, but not necessarily highly ranked by docking methods, benefitted most from AF2 rescoring by experiencing large advances towards the top of the reranked list of models. These improvements, obtained without any calibration or novel methodologies, led to a notable level of performance in antibody-antigen unbound docking that was never achieved previously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sasa完成签到,获得积分10
刚刚
ling_lz发布了新的文献求助10
刚刚
傅凌兰发布了新的文献求助10
2秒前
赘婿应助caicai采纳,获得10
3秒前
科目三应助心碎莫扎特采纳,获得10
5秒前
那时花开发布了新的文献求助10
5秒前
栗子完成签到,获得积分10
6秒前
唠叨的乌发布了新的文献求助20
7秒前
QWER发布了新的文献求助10
7秒前
Drtaoao完成签到 ,获得积分10
9秒前
李健应助少年的回忆采纳,获得10
9秒前
9秒前
11秒前
GT发布了新的文献求助10
11秒前
XIXIXI发布了新的文献求助10
12秒前
小青椒应助酷酷的耷采纳,获得30
16秒前
anlikek发布了新的文献求助10
16秒前
18秒前
从善驳回了Hello应助
18秒前
vivien完成签到,获得积分10
21秒前
21秒前
21秒前
逐影完成签到,获得积分20
22秒前
精明世倌完成签到 ,获得积分10
23秒前
淡定的初夏应助wjp采纳,获得10
24秒前
24秒前
yalin完成签到,获得积分10
25秒前
26秒前
26秒前
31秒前
juan发布了新的文献求助10
32秒前
33秒前
33秒前
菜鸟队长发布了新的文献求助10
34秒前
XIXIXI完成签到 ,获得积分10
35秒前
36秒前
短巷发布了新的文献求助10
36秒前
37秒前
Criminology34应助端庄从凝采纳,获得10
39秒前
科研通AI6应助酷酷的耷采纳,获得20
41秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384107
求助须知:如何正确求助?哪些是违规求助? 4507070
关于积分的说明 14026579
捐赠科研通 4416653
什么是DOI,文献DOI怎么找? 2426089
邀请新用户注册赠送积分活动 1418888
关于科研通互助平台的介绍 1397100