Enhanced antibody-antigen structure prediction from molecular docking using AlphaFold2

对接(动物) 诱饵 假阳性悖论 计算机科学 计算生物学 抗原 人工智能 机器学习 生物 医学 免疫学 生物化学 护理部 受体
作者
Francis Gaudreault,Christopher R. Corbeil,Traian Sulea
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1)
标识
DOI:10.1038/s41598-023-42090-5
摘要

Abstract Predicting the structure of antibody-antigen complexes has tremendous value in biomedical research but unfortunately suffers from a poor performance in real-life applications. AlphaFold2 (AF2) has provided renewed hope for improvements in the field of protein–protein docking but has shown limited success against antibody-antigen complexes due to the lack of co-evolutionary constraints. In this study, we used physics-based protein docking methods for building decoy sets consisting of low-energy docking solutions that were either geometrically close to the native structure (positives) or not (negatives). The docking models were then fed into AF2 to assess their confidence with a novel composite score based on normalized pLDDT and pTMscore metrics after AF2 structural refinement. We show benefits of the AF2 composite score for rescoring docking poses both in terms of (1) classification of positives/negatives and of (2) success rates with particular emphasis on early enrichment. Docking models of at least medium quality present in the decoy set, but not necessarily highly ranked by docking methods, benefitted most from AF2 rescoring by experiencing large advances towards the top of the reranked list of models. These improvements, obtained without any calibration or novel methodologies, led to a notable level of performance in antibody-antigen unbound docking that was never achieved previously.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CCC发布了新的文献求助10
1秒前
1秒前
清秀秀完成签到,获得积分10
1秒前
时光留痕完成签到,获得积分10
1秒前
kid完成签到,获得积分10
2秒前
称心元枫发布了新的文献求助10
2秒前
2秒前
英姑应助六小八采纳,获得10
2秒前
所所应助powder采纳,获得10
2秒前
可爱多发布了新的文献求助10
2秒前
不爱科研完成签到,获得积分10
3秒前
3秒前
今后应助可爱山柳采纳,获得10
3秒前
无疾而终完成签到,获得积分10
3秒前
3秒前
跟我回江南完成签到,获得积分10
4秒前
zz发布了新的文献求助20
4秒前
量子星尘发布了新的文献求助10
5秒前
hoyan完成签到,获得积分10
5秒前
5秒前
天天快乐应助yelingyuan采纳,获得10
6秒前
HAFun完成签到,获得积分10
6秒前
kid发布了新的文献求助10
6秒前
GUO完成签到 ,获得积分10
6秒前
6秒前
我是老大应助YJ888采纳,获得10
6秒前
简单的大白完成签到,获得积分10
6秒前
谨慎晓灵发布了新的文献求助10
6秒前
哇哇哇完成签到 ,获得积分10
7秒前
7秒前
情怀应助667采纳,获得10
7秒前
ff完成签到,获得积分10
7秒前
啦啦啦啦完成签到,获得积分10
8秒前
科研通AI6应助维克托采纳,获得10
8秒前
dsm完成签到 ,获得积分10
8秒前
9秒前
10秒前
10秒前
DC发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618857
求助须知:如何正确求助?哪些是违规求助? 4703798
关于积分的说明 14923864
捐赠科研通 4758637
什么是DOI,文献DOI怎么找? 2550264
邀请新用户注册赠送积分活动 1513097
关于科研通互助平台的介绍 1474401