Enhanced antibody-antigen structure prediction from molecular docking using AlphaFold2

对接(动物) 诱饵 假阳性悖论 计算机科学 计算生物学 抗原 人工智能 机器学习 生物 医学 免疫学 生物化学 护理部 受体
作者
Francis Gaudreault,Christopher R. Corbeil,Traian Sulea
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1)
标识
DOI:10.1038/s41598-023-42090-5
摘要

Abstract Predicting the structure of antibody-antigen complexes has tremendous value in biomedical research but unfortunately suffers from a poor performance in real-life applications. AlphaFold2 (AF2) has provided renewed hope for improvements in the field of protein–protein docking but has shown limited success against antibody-antigen complexes due to the lack of co-evolutionary constraints. In this study, we used physics-based protein docking methods for building decoy sets consisting of low-energy docking solutions that were either geometrically close to the native structure (positives) or not (negatives). The docking models were then fed into AF2 to assess their confidence with a novel composite score based on normalized pLDDT and pTMscore metrics after AF2 structural refinement. We show benefits of the AF2 composite score for rescoring docking poses both in terms of (1) classification of positives/negatives and of (2) success rates with particular emphasis on early enrichment. Docking models of at least medium quality present in the decoy set, but not necessarily highly ranked by docking methods, benefitted most from AF2 rescoring by experiencing large advances towards the top of the reranked list of models. These improvements, obtained without any calibration or novel methodologies, led to a notable level of performance in antibody-antigen unbound docking that was never achieved previously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cz发布了新的文献求助10
刚刚
2秒前
酷波er应助杨志坚采纳,获得10
2秒前
3秒前
3秒前
Zhang发布了新的文献求助10
4秒前
CodeCraft应助林林总总采纳,获得10
4秒前
dmhsds发布了新的文献求助10
4秒前
5秒前
福star高照完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
keytolove完成签到,获得积分10
8秒前
胡国伟发布了新的文献求助10
10秒前
靓丽行天发布了新的文献求助10
10秒前
11秒前
依旧发布了新的文献求助10
11秒前
脑洞疼应助Jason采纳,获得10
13秒前
lqy555发布了新的文献求助10
13秒前
杨志坚发布了新的文献求助10
13秒前
13秒前
Orange应助欧阳宇采纳,获得30
14秒前
陶醉琳发布了新的文献求助10
15秒前
一区作者发布了新的文献求助10
15秒前
16秒前
Dester发布了新的文献求助10
16秒前
16秒前
zhuann发布了新的文献求助10
18秒前
ECCE完成签到,获得积分10
18秒前
烟花应助义气幼珊采纳,获得10
19秒前
佳loong发布了新的文献求助10
20秒前
ding应助IKARUTO采纳,获得10
20秒前
俊秀而发布了新的文献求助10
20秒前
21秒前
依旧完成签到,获得积分10
22秒前
牛又亦完成签到,获得积分10
22秒前
22秒前
23秒前
小猫完成签到,获得积分10
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150106
求助须知:如何正确求助?哪些是违规求助? 2801196
关于积分的说明 7843534
捐赠科研通 2458660
什么是DOI,文献DOI怎么找? 1308585
科研通“疑难数据库(出版商)”最低求助积分说明 628556
版权声明 601721