Evaluation of a Deep Learning-based Algorithm for Post-Radiotherapy Prostate Cancer Local Recurrence Detection Using Biparametric MRI

医学 前列腺癌 近距离放射治疗 外照射放疗 前瞻性队列研究 放射治疗 活检 核医学 放射科 前列腺切除术 前列腺 癌症 外科 内科学
作者
Enis C. Yılmaz,Stephanie A. Harmon,Mason J. Belue,Katie Merriman,Tim E. Phelps,Yue Lin,Charisse Garcia,Lindsey A. Hazen,Krishnan R. Patel,Maria J. Merino,Bradford J. Wood,Peter L. Choyke,Peter A. Pinto,Deborah E. Citrin,Barış Türkbey
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:168: 111095-111095 被引量:2
标识
DOI:10.1016/j.ejrad.2023.111095
摘要

To evaluate a biparametric MRI (bpMRI)-based artificial intelligence (AI) model for the detection of local prostate cancer (PCa) recurrence in patients with radiotherapy history.This study included post-radiotherapy patients undergoing multiparametric MRI and subsequent MRI/US fusion-guided and/or systematic biopsy. Histopathology results were used as ground truth. The recurrent cancer detection sensitivity of a bpMRI-based AI model, which was developed on a large dataset to primarily identify lesions in treatment-naïve patients, was compared to a prospective radiologist assessment using the Wald test. Subanalysis was conducted on patients stratified by the treatment modality (external beam radiation treatment [EBRT] and brachytherapy) and the prostate volume quartiles.Of the 62 patients included (median age = 70 years; median PSA = 3.51 ng/ml; median prostate volume = 27.55 ml), 56 recurrent PCa foci were identified within 46 patients. The AI model detected 40 lesions in 35 patients. The AI model performance was lower than the prospective radiology interpretation (Rad) on a patient-(AI: 76.1% vs. Rad: 91.3%, p = 0.02) and lesion-level (AI: 71.4% vs. Rad: 87.5%, p = 0.01). The mean number of false positives per patient was 0.35 (range: 0-2). The AI model performance was higher in EBRT group both on patient-level (EBRT: 81.5% [22/27] vs. brachytherapy: 68.4% [13/19]) and lesion-level (EBRT: 79.4% [27/34] vs. brachytherapy: 59.1% [13/22]). In patients with gland volumes >34 ml (n = 25), detection sensitivities were 100% (11/11) and 94.1% (16/17) on patient- and lesion-level, respectively.The reported bpMRI-based AI model detected the majority of locally recurrent prostate cancer after radiotherapy. Further testing including external validation of this model is warranted prior to clinical implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nyxia发布了新的文献求助10
1秒前
1秒前
orixero应助Molinxue采纳,获得10
1秒前
绮玉完成签到,获得积分10
2秒前
3秒前
4秒前
缓慢乐天完成签到,获得积分10
5秒前
Jarvis完成签到,获得积分10
6秒前
6秒前
武穆杰发布了新的文献求助10
7秒前
8秒前
8秒前
Akim应助Nyxia采纳,获得10
9秒前
9秒前
茗佞发布了新的文献求助10
11秒前
568923发布了新的文献求助10
11秒前
zsm完成签到,获得积分10
11秒前
想人陪的一刀完成签到,获得积分20
12秒前
充电宝应助美味的薯片采纳,获得10
12秒前
13秒前
任性背包发布了新的文献求助10
14秒前
14秒前
quan发布了新的文献求助10
14秒前
14秒前
眼镜胖子发布了新的文献求助10
15秒前
所所应助苏格拉底的嘲笑采纳,获得10
16秒前
Owen应助一方通行采纳,获得10
16秒前
Liufgui应助mzbgnk采纳,获得10
16秒前
16秒前
sanwen完成签到,获得积分10
17秒前
18秒前
19秒前
19秒前
19秒前
充电宝应助眼镜胖子采纳,获得10
23秒前
情怀应助破心采纳,获得10
23秒前
LEI发布了新的文献求助10
23秒前
香蕉觅云应助科研通管家采纳,获得10
24秒前
研友_ngkyGn应助科研通管家采纳,获得10
24秒前
yar应助科研通管家采纳,获得10
24秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998688
求助须知:如何正确求助?哪些是违规求助? 3538149
关于积分的说明 11273517
捐赠科研通 3277099
什么是DOI,文献DOI怎么找? 1807405
邀请新用户注册赠送积分活动 883855
科研通“疑难数据库(出版商)”最低求助积分说明 810070