Evaluation of a Deep Learning-based Algorithm for Post-Radiotherapy Prostate Cancer Local Recurrence Detection Using Biparametric MRI

医学 前列腺癌 近距离放射治疗 外照射放疗 前瞻性队列研究 放射治疗 活检 核医学 放射科 前列腺切除术 前列腺 癌症 外科 内科学
作者
Enis C. Yılmaz,Stephanie A. Harmon,Mason J. Belue,Katie Merriman,Tim E. Phelps,Yue Lin,Charisse Garcia,Lindsey A. Hazen,Krishnan R. Patel,Maria J. Merino,Bradford J. Wood,Peter L. Choyke,Peter A. Pinto,Deborah E. Citrin,Barış Türkbey
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:168: 111095-111095 被引量:2
标识
DOI:10.1016/j.ejrad.2023.111095
摘要

To evaluate a biparametric MRI (bpMRI)-based artificial intelligence (AI) model for the detection of local prostate cancer (PCa) recurrence in patients with radiotherapy history.This study included post-radiotherapy patients undergoing multiparametric MRI and subsequent MRI/US fusion-guided and/or systematic biopsy. Histopathology results were used as ground truth. The recurrent cancer detection sensitivity of a bpMRI-based AI model, which was developed on a large dataset to primarily identify lesions in treatment-naïve patients, was compared to a prospective radiologist assessment using the Wald test. Subanalysis was conducted on patients stratified by the treatment modality (external beam radiation treatment [EBRT] and brachytherapy) and the prostate volume quartiles.Of the 62 patients included (median age = 70 years; median PSA = 3.51 ng/ml; median prostate volume = 27.55 ml), 56 recurrent PCa foci were identified within 46 patients. The AI model detected 40 lesions in 35 patients. The AI model performance was lower than the prospective radiology interpretation (Rad) on a patient-(AI: 76.1% vs. Rad: 91.3%, p = 0.02) and lesion-level (AI: 71.4% vs. Rad: 87.5%, p = 0.01). The mean number of false positives per patient was 0.35 (range: 0-2). The AI model performance was higher in EBRT group both on patient-level (EBRT: 81.5% [22/27] vs. brachytherapy: 68.4% [13/19]) and lesion-level (EBRT: 79.4% [27/34] vs. brachytherapy: 59.1% [13/22]). In patients with gland volumes >34 ml (n = 25), detection sensitivities were 100% (11/11) and 94.1% (16/17) on patient- and lesion-level, respectively.The reported bpMRI-based AI model detected the majority of locally recurrent prostate cancer after radiotherapy. Further testing including external validation of this model is warranted prior to clinical implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
orixero应助玉yu采纳,获得10
刚刚
1秒前
sansan发布了新的文献求助10
1秒前
劉劉完成签到 ,获得积分10
2秒前
酷波er应助阳光的衫采纳,获得10
2秒前
火星上的菲鹰应助hkh采纳,获得10
2秒前
SciGPT应助Ll采纳,获得10
3秒前
buno应助懦弱的安珊采纳,获得10
3秒前
MADKAI发布了新的文献求助10
4秒前
happy完成签到,获得积分10
4秒前
丰知然完成签到,获得积分0
4秒前
马佳凯完成签到,获得积分20
5秒前
徐翩跹发布了新的文献求助10
5秒前
lan发布了新的文献求助10
5秒前
科研民工发布了新的文献求助10
5秒前
小二郎应助夏昼采纳,获得10
6秒前
香蕉觅云应助LIU采纳,获得10
6秒前
sunny完成签到,获得积分10
6秒前
7秒前
所所应助大意的安白采纳,获得10
7秒前
elena发布了新的文献求助10
7秒前
7秒前
Tal完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
Orange应助毕业就好采纳,获得10
9秒前
机灵画板发布了新的文献求助10
9秒前
10秒前
10秒前
桐桐应助Elaine采纳,获得10
10秒前
Ymj发布了新的文献求助10
11秒前
JamesPei应助yyf采纳,获得10
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740