Identification of potential drug targets for rheumatoid arthritis from genetic insights: a Mendelian randomization study

孟德尔随机化 医学 类风湿性关节炎 药品 药物遗传学 药物基因组学 样本量测定 临床试验 生物信息学 计算生物学 基因 内科学 药理学 生物 遗传学 基因型 遗传变异 统计 数学
作者
Yu Cao,Ying Yang,Qingfeng Hu,Guojun Wei
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:21 (1) 被引量:20
标识
DOI:10.1186/s12967-023-04474-z
摘要

Abstract Introduction Rheumatoid arthritis (RA) is a chronic inflammatory illness that mostly affects the joints of the hands and feet and can reduce life expectancy by an average of 3 to 10 years. Although tremendous progress has been achieved in the treatment of RA, a large minority of patients continue to respond poorly to existing medications, owing in part to a lack of appropriate therapeutic targets. Methods To find therapeutic targets for RA, a Mendelian randomization (MR) was performed. Cis-expression quantitative trait loci (cis-eQTL, exposure) data were obtained from the eQTLGen Consortium (sample size 31,684). Summary statistics for RA (outcome) were obtained from two largest independent cohorts: sample sizes of 97,173 (22,350 cases and 74,823 controls) and 269,377 (8279 cases and 261,098), respectively. Colocalisation analysis was used to test whether RA risk and gene expression were driven by common SNPs. Drug prediction and molecular docking was further used to validate the medicinal value of drug targets. Results Seven drug targets were significant in both cohorts in MR analysis and supported by localization. PheWAS at the gene level showed only ATP2A1 associated with other traits. These genes are strongly associated with immune function in terms of biological significance. Molecular docking showed excellent binding for drugs and proteins with available structural data. Conclusion This study identifies seven potential drug targets for RA. Drugs designed to target these genes have a higher chance of success in clinical trials and is expected to help prioritise RA drug development and save on drug development costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迨你个迨迨完成签到,获得积分20
刚刚
乐乐应助拓扑超导相变采纳,获得10
1秒前
Hongbin发布了新的文献求助10
1秒前
Dr.Du完成签到,获得积分10
2秒前
Evelyn完成签到 ,获得积分10
2秒前
文艺大米完成签到 ,获得积分10
3秒前
6秒前
Ava应助小赵采纳,获得10
6秒前
xphpyy完成签到,获得积分10
7秒前
11秒前
UPUP0707完成签到,获得积分10
12秒前
RGTRAN完成签到,获得积分20
13秒前
科研通AI2S应助兮兮采纳,获得10
13秒前
999驳回了打打应助
15秒前
wbbbb发布了新的文献求助10
15秒前
哈哈怪完成签到 ,获得积分20
16秒前
16秒前
16秒前
18秒前
chrispaul完成签到,获得积分10
20秒前
小赵发布了新的文献求助10
21秒前
22秒前
NexusExplorer应助ranj采纳,获得10
22秒前
YY完成签到,获得积分10
23秒前
petiteblanche发布了新的文献求助10
24秒前
26秒前
乐乐应助坚强的严青采纳,获得10
27秒前
yinlu发布了新的文献求助10
27秒前
无花果应助rundstedt采纳,获得10
27秒前
doctor赵完成签到,获得积分10
28秒前
传奇3应助巴西琉斯采纳,获得10
30秒前
Lucas应助petiteblanche采纳,获得10
31秒前
情怀应助小分队采纳,获得10
32秒前
koayer完成签到,获得积分10
32秒前
Sinner发布了新的文献求助10
32秒前
传奇3应助科研通管家采纳,获得10
32秒前
香蕉觅云应助科研通管家采纳,获得10
32秒前
32秒前
33秒前
34秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125673
求助须知:如何正确求助?哪些是违规求助? 2775964
关于积分的说明 7728568
捐赠科研通 2431440
什么是DOI,文献DOI怎么找? 1292065
科研通“疑难数据库(出版商)”最低求助积分说明 622314
版权声明 600376