Diagnosis of cognitive and motor disorders levels in stroke patients through explainable machine learning based on MRI

认知 冲程(发动机) 物理医学与康复 康复 医学 机器学习 人工智能 心理学 物理疗法 计算机科学 精神科 机械工程 工程类
作者
Meng Wang,Yi Lin,Feifei Gu,Wenyu Xing,Boyi Li,Xue Jiang,Chengcheng Liu,Dan Li,Ying Li,Yi Wu,Dean Ta
出处
期刊:Medical Physics [Wiley]
卷期号:51 (3): 1763-1774 被引量:4
标识
DOI:10.1002/mp.16683
摘要

Abstract Background Globally, stroke is the third most significant cause of disability. A stroke may produce motor, sensory, perceptual, or cognitive disorders that result in disability and affect the likelihood of recovery, affecting a person's ability to function. Evaluation post‐stroke is critical for optimal stroke care. Purpose Traditional methods for classifying the clinical disorders of cognitive and motor in stroke patients use assessment and interrogative measures, which are time‐consuming, complex, and labor‐intensive. In response to the current situation, this study develops an algorithm to automatically classify motor and cognitive disorders in stroke patients by 3D brain MRI to assist physicians in diagnosis. Methods First, radiomics and fusion features are extracted from the OAx T2 Propeller of 3D brain MRI. Then, we use 14 machine learning models and one model ensemble method to predict Fugl‐Meyer and MMSE levels of stroke patients. Next, we evaluate the models using accuracy, recall, f1‐score, and area under the curve (AUC). Finally, we employ SHAP to explain the output of the model. Results The best predictive models come from Random Forest (RF) Classifier with fusion features in cognitive classification and Linear Discriminant Analysis (LDA) with radiomics features in motor classification. The highest accuracies are 92.0 and 82.5% for cognitive and motor disorders. Conclusions MRI brain maps can classify the cognitive and motor disorders of stroke patients. Radiomics features demonstrate its merits. The proposed algorithms with MRI images can efficiently assist physicians in diagnosing the cognitive and motor disorders of stroke patients in clinical practice. Additionally, this lessens labor costs, improves diagnostic effectiveness, and avoids the subjective difference that comes with manual assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助三年H采纳,获得10
1秒前
1秒前
科研顺利发布了新的文献求助10
1秒前
ygy291956558发布了新的文献求助20
1秒前
2秒前
3秒前
3秒前
丘比特应助Genius采纳,获得10
3秒前
ee发布了新的文献求助10
4秒前
Owen应助坦率的含海采纳,获得10
4秒前
大模型应助坦率的含海采纳,获得10
4秒前
Owen应助坦率的含海采纳,获得10
4秒前
所所应助坦率的含海采纳,获得10
4秒前
CipherSage应助坦率的含海采纳,获得10
4秒前
SciGPT应助坦率的含海采纳,获得10
4秒前
NexusExplorer应助MAKEYF采纳,获得10
4秒前
科研通AI6应助九月采纳,获得10
5秒前
所所应助周美言采纳,获得10
6秒前
7秒前
7秒前
dada发布了新的文献求助10
7秒前
科目三应助tjr采纳,获得10
7秒前
王佳俊完成签到,获得积分10
8秒前
冷静的若冰完成签到 ,获得积分10
8秒前
科研通AI6应助科研顺利采纳,获得10
8秒前
8秒前
大方的蓝完成签到 ,获得积分10
9秒前
9秒前
9秒前
wenxiangou完成签到,获得积分10
9秒前
77发布了新的文献求助10
9秒前
悦耳伊发布了新的文献求助10
9秒前
10秒前
10秒前
尔安完成签到,获得积分10
11秒前
11秒前
陈陈完成签到 ,获得积分10
11秒前
拾荒队长完成签到 ,获得积分10
11秒前
安安发布了新的文献求助10
11秒前
三年H完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576966
求助须知:如何正确求助?哪些是违规求助? 4662231
关于积分的说明 14740378
捐赠科研通 4602878
什么是DOI,文献DOI怎么找? 2525991
邀请新用户注册赠送积分活动 1495885
关于科研通互助平台的介绍 1465470