Diagnosis of cognitive and motor disorders levels in stroke patients through explainable machine learning based on MRI

认知 冲程(发动机) 物理医学与康复 康复 医学 机器学习 人工智能 心理学 物理疗法 计算机科学 精神科 机械工程 工程类
作者
Meng Wang,Yi Lin,Feifei Gu,Wenyu Xing,Boyi Li,Xue Jiang,Chengcheng Liu,Dan Li,Ying Li,Yi Wu,Dean Ta
出处
期刊:Medical Physics [Wiley]
卷期号:51 (3): 1763-1774 被引量:4
标识
DOI:10.1002/mp.16683
摘要

Abstract Background Globally, stroke is the third most significant cause of disability. A stroke may produce motor, sensory, perceptual, or cognitive disorders that result in disability and affect the likelihood of recovery, affecting a person's ability to function. Evaluation post‐stroke is critical for optimal stroke care. Purpose Traditional methods for classifying the clinical disorders of cognitive and motor in stroke patients use assessment and interrogative measures, which are time‐consuming, complex, and labor‐intensive. In response to the current situation, this study develops an algorithm to automatically classify motor and cognitive disorders in stroke patients by 3D brain MRI to assist physicians in diagnosis. Methods First, radiomics and fusion features are extracted from the OAx T2 Propeller of 3D brain MRI. Then, we use 14 machine learning models and one model ensemble method to predict Fugl‐Meyer and MMSE levels of stroke patients. Next, we evaluate the models using accuracy, recall, f1‐score, and area under the curve (AUC). Finally, we employ SHAP to explain the output of the model. Results The best predictive models come from Random Forest (RF) Classifier with fusion features in cognitive classification and Linear Discriminant Analysis (LDA) with radiomics features in motor classification. The highest accuracies are 92.0 and 82.5% for cognitive and motor disorders. Conclusions MRI brain maps can classify the cognitive and motor disorders of stroke patients. Radiomics features demonstrate its merits. The proposed algorithms with MRI images can efficiently assist physicians in diagnosing the cognitive and motor disorders of stroke patients in clinical practice. Additionally, this lessens labor costs, improves diagnostic effectiveness, and avoids the subjective difference that comes with manual assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈住气完成签到,获得积分20
3秒前
调皮的如凡完成签到,获得积分10
4秒前
完美世界应助穿梭效应采纳,获得10
5秒前
ASIS完成签到,获得积分10
5秒前
5秒前
5秒前
zdw完成签到,获得积分10
7秒前
8秒前
草莓芝士发布了新的文献求助10
10秒前
10秒前
张叶卓发布了新的文献求助10
11秒前
11秒前
12秒前
14秒前
天天快乐应助Young采纳,获得10
15秒前
dssdadadds发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
16秒前
会飞的猪发布了新的文献求助10
17秒前
CCsci完成签到 ,获得积分10
17秒前
17秒前
18秒前
Dawn_ZZZ发布了新的文献求助10
18秒前
领导范儿应助Inanopig采纳,获得10
18秒前
He完成签到,获得积分10
19秒前
tong77发布了新的文献求助10
20秒前
20秒前
ssx发布了新的文献求助10
20秒前
穿梭效应发布了新的文献求助10
20秒前
20秒前
小小铱完成签到,获得积分10
21秒前
21秒前
banban完成签到 ,获得积分10
21秒前
wanci应助沧笙踏歌采纳,获得10
21秒前
kingkong完成签到,获得积分10
21秒前
柳大宝发布了新的文献求助10
22秒前
dssdadadds完成签到,获得积分20
22秒前
22222发布了新的文献求助10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956520
求助须知:如何正确求助?哪些是违规求助? 3502655
关于积分的说明 11109426
捐赠科研通 3233441
什么是DOI,文献DOI怎么找? 1787343
邀请新用户注册赠送积分活动 870650
科研通“疑难数据库(出版商)”最低求助积分说明 802141