Unleashing Ambient Triplet Harvesting Pathways in Arylene Diimides via Modular, Noncovalent Charge Transfer Interactions

芳烯 模块化设计 电荷(物理) 材料科学 化学 纳米技术 计算机科学 物理 有机化学 烷基 量子力学 芳基 操作系统
作者
Anju Ajayan Kongasseri,Swadhin Garain,Shagufi Naz Ansari,Bidhan Chandra Garain,Sopan M. Wagalgave,U.P. Singh,Swapan K. Pati,Subi J. George
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:35 (18): 7781-7788 被引量:20
标识
DOI:10.1021/acs.chemmater.3c01667
摘要

Development of organic molecules that can harvest triplet excitons under ambient conditions by a relatively simple strategy holds great promise in the paradigm of photophysics. Deploying through-space charge transfer (CT) interactions via noncovalently stacked donor–acceptor molecular design that can be tuned in accordance with simple structural modifications can be considered an attractive strategy toward this direction. Herein, we accomplish a precise control in tuning the triplet harvesting pathways in donor–acceptor cocrystals by engineering CT complexation between them. We use pyromellitic diimide (PmDI) phosphor to cocrystallize with different donors such as dibenzofuran (DBF), dibenzothiophene (DBT), and dibenzoselenophene (DBS) that augment CT complexation between the two counterparts and carefully toggle the emission into singlet CT (1CT) fluorescence, thermally activated delayed fluorescence (TADF), and triplet CT (3CT) phosphorescence, in their respective cocrystals. On moving from PmDI-DBF to PmDI-DBT, emission was biased from 1CT fluorescence to TADF. The synergistic involvement of the strong heavy-atom effect with CT complexation diverts the excited emission from TADF to exclusively 3CT phosphorescence in PmDI-DBS. Most crucially, we not only put forward a methodology for biasing the excited state to various ambient triplet harvesting pathways but also glorify a modular noncovalent donor–acceptor strategy without complicated synthetic efforts unlike conventional covalent donor–acceptor molecular designs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
MrLv发布了新的文献求助10
1秒前
椿人发布了新的文献求助10
1秒前
大个应助小陈采纳,获得10
2秒前
2秒前
2秒前
华66完成签到,获得积分10
3秒前
柚子发布了新的文献求助10
4秒前
领导范儿应助愤怒的面包采纳,获得10
5秒前
凡仔发布了新的文献求助10
6秒前
6秒前
7秒前
yangyajie发布了新的文献求助10
8秒前
kk完成签到 ,获得积分10
8秒前
9秒前
9秒前
MrLv完成签到,获得积分10
9秒前
搜第一完成签到,获得积分10
10秒前
林lin完成签到 ,获得积分10
12秒前
12秒前
脑洞疼应助zyy采纳,获得10
13秒前
kk发布了新的文献求助10
14秒前
zzzz完成签到,获得积分10
15秒前
15秒前
凡仔完成签到,获得积分20
15秒前
huahua发布了新的文献求助10
16秒前
16秒前
zk完成签到,获得积分10
17秒前
wanci应助Bleser采纳,获得10
17秒前
17秒前
ddd123完成签到,获得积分10
18秒前
18秒前
19秒前
一根葱发布了新的文献求助10
19秒前
板凳儿cc发布了新的文献求助20
22秒前
ZXY发布了新的文献求助10
23秒前
23秒前
xfy完成签到,获得积分10
24秒前
24秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
读者个体因素对汉语阅读中眼动行为的影响 710
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560126
求助须知:如何正确求助?哪些是违规求助? 3134333
关于积分的说明 9407006
捐赠科研通 2834465
什么是DOI,文献DOI怎么找? 1558136
邀请新用户注册赠送积分活动 727912
科研通“疑难数据库(出版商)”最低求助积分说明 716563