材料科学
热电效应
塞贝克系数
热导率
薄膜
复合材料
热扩散率
热电材料
热电发电机
光电子学
纳米技术
热力学
物理
作者
Junze Zhang,Mohammad Nisar,Hanwen Xu,Fu Li,Zhuanghao Zheng,Guangxing Liang,Ping Fan,Yue‐Xing Chen
标识
DOI:10.1021/acsami.3c12486
摘要
Herein, an n-type Ag2Se thermoelectric flexible thin film has been fabricated on a polyimide (PI) substrate via a novel thermal diffusion method, and the thermoelectric performance is well-optimized by adjusting the pressure and temperature of thermal diffusion. All of the Ag2Se films are beneficial to grow (013) preferred orientations, which is conducive to performing a high Seebeck coefficient. By increasing the thermal diffusion temperature, the electrical conductivity can be rationally regulated while maintaining the independence of the Seebeck coefficient, which is mainly attributed to the increased electric mobility. As a result, the fabricated Ag2Se thin film achieves a high power factor of 18.25 μW cm–1 K–2 at room temperature and a maximum value of 21.7 μW cm–1 K–2 at 393 K. Additionally, the thermal diffusion method has resulted in a wave-shaped buckling, which is further verified as a promising structure to realize a larger temperature difference by the simulation results of finite element analysis (FEA). Additionally, this unique surface morphology of the Ag2Se thin film also exhibits outstanding mechanical properties, for which the elasticity modulus is only 0.42 GPa. Finally, a flexible round-shaped module assembled with Sb2Te3 has demonstrated an output power of 166 nW at a temperature difference of 50 K. This work not only introduces a new method of preparing Ag2Se thin films but also offers a convincing strategy of optimizing the microstructure to enhance low-grade heat utilization efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI