ExplaiNAble BioLogical Age (ENABL Age): an artificial intelligence framework for interpretable biological age

生物年龄 生命银行 全国健康与营养检查调查 可解释性 人口学 年龄组 老年学 医学 人工智能 计算机科学 生物 生物信息学 人口 社会学
作者
Wei Qiu,Hugh Chen,Matt Kaeberlein,Su‐In Lee
出处
期刊:The Lancet Healthy Longevity [Elsevier]
卷期号:4 (12): e711-e723 被引量:5
标识
DOI:10.1016/s2666-7568(23)00189-7
摘要

Biological age is a measure of health that offers insights into ageing. The existing age clocks, although valuable, often trade off accuracy and interpretability. We introduce ExplaiNAble BioLogical Age (ENABL Age), a computational framework that combines machine-learning models with explainable artificial intelligence (XAI) methods to accurately estimate biological age with individualised explanations.To construct the ENABL Age clock, we first predicted an age-related outcome (eg, all-cause or cause-specific mortality), and then rescaled these predictions to estimate biological age, using UK Biobank and National Health and Nutrition Examination Survey (NHANES) datasets. We adapted existing XAI methods to decompose individual ENABL Ages into contributing risk factors. For broad accessibility, we developed two versions: ENABL Age-L, based on blood tests, and ENABL Age-Q, based on questionnaire characteristics. Finally, we validated diverse ageing mechanisms captured by each ENABL Age clock through genome-wide association studies (GWAS) association analyses.Our ENABL Age clock was significantly correlated with chronological age (r=0·7867, p<0·0001 for UK Biobank; r=0·7126, p<0·0001 for NHANES). These clocks distinguish individuals who are healthy (ie, their ENABL Age is lower than their chronological age) from those who are unhealthy (ie, their ENABL Age is higher than their chronological age), predicting mortality more effectively than existing clocks. Groups of individuals who were unhealthy showed approximately three to 12 times higher log hazard ratio than healthy groups, as per ENABL Age. The clocks achieved high mortality prediction power with an area under the receiver operating characteristic curve of 0·8179 for 5-year mortality and 0·8115 for 10-year mortality on the UK Biobank dataset, and 0·8935 for 5-year mortality and 0·9107 for 10-year mortality on the NHANES dataset. The individualised explanations that revealed the contribution of specific characteristics to ENABL Age provided insights into the important characteristics for ageing. An association analysis with risk factors and ageing-related morbidities and GWAS results on ENABL Age clocks trained on different mortality causes showed that each clock captures distinct ageing mechanisms.ENABL Age brings an important leap forward in the application of XAI for interpreting biological age clocks. ENABL Age also carries substantial potential in practical settings, assisting medical professionals in untangling the complexity of ageing mechanisms, and potentially becoming a valuable tool in informed clinical decision-making processes.National Science Foundation and National Institutes of Health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马玲发布了新的文献求助10
1秒前
NexusExplorer应助jwhardaway采纳,获得10
1秒前
坚定飞鸟完成签到,获得积分10
2秒前
HWJ关注了科研通微信公众号
3秒前
4秒前
大模型应助等待的雪碧采纳,获得10
4秒前
4秒前
4秒前
听风随影发布了新的文献求助10
4秒前
雾中的山雾中的我完成签到,获得积分10
5秒前
koukousang完成签到,获得积分10
5秒前
cfcf完成签到 ,获得积分10
5秒前
pipi发布了新的文献求助10
5秒前
优美一寡完成签到,获得积分10
6秒前
添酱完成签到,获得积分20
6秒前
crescentluo完成签到,获得积分10
8秒前
赘婿应助lalala采纳,获得10
8秒前
8秒前
9秒前
李春霞发布了新的文献求助10
9秒前
Cruffin发布了新的文献求助10
10秒前
10秒前
踏实的映易完成签到 ,获得积分10
10秒前
香蕉觅云应助happiness采纳,获得10
11秒前
一一发布了新的文献求助10
11秒前
SciGPT应助chl采纳,获得10
11秒前
完美世界应助小黄瓜896采纳,获得30
11秒前
jwhardaway完成签到,获得积分10
12秒前
斯人完成签到,获得积分10
12秒前
花见完成签到 ,获得积分20
13秒前
温暖的俊驰完成签到,获得积分10
13秒前
13秒前
14秒前
差生文具多完成签到 ,获得积分10
15秒前
15秒前
FashionBoy应助lu采纳,获得10
15秒前
科研小菜发布了新的文献求助10
16秒前
捞钱阿达完成签到,获得积分10
16秒前
张磊完成签到,获得积分10
16秒前
j736999565发布了新的文献求助10
16秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159124
求助须知:如何正确求助?哪些是违规求助? 2810283
关于积分的说明 7887027
捐赠科研通 2469127
什么是DOI,文献DOI怎么找? 1314668
科研通“疑难数据库(出版商)”最低求助积分说明 630671
版权声明 602012