清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Endoscopic Rectal Ultrasound‐Based Radiomics Analysis for the Prediction of Synchronous Liver Metastasis in Patients With Primary Rectal Cancer

医学 无线电技术 逻辑回归 接收机工作特性 结直肠癌 放射科 超声波 临床试验 队列 内科学 肿瘤科 癌症
作者
Meiyan Mou,Ruizhi Gao,Yuquan Wu,Peng Lin,Hongxia Yin,Fenghuan Chen,Fen Huang,Rong Wen,Hong Yang,Yun He
出处
期刊:Journal of Ultrasound in Medicine [Wiley]
被引量:2
标识
DOI:10.1002/jum.16369
摘要

Objectives To develop and validate an ultrasound‐based radiomics model to predict synchronous liver metastases (SLM) in rectal cancer (RC) patients preoperatively. Methods Two hundred and thirty‐nine RC patients were included in this study and randomly divided into training and validation cohorts. A total of 5936 radiomics features were calculated on the basis of ultrasound images to build a radiomic model and obtain a radiomics score (Rad‐score) using logistic regression. Meanwhile, clinical characteristics were collected to construct a clinical model. The radiomics–clinical model was developed and validated by integrating the radiomics features with the selected clinical characteristics. The performances of three models were evaluated and compared through their discrimination, calibration, and clinical usefulness. Results The radiomics model was developed based on 13 radiomic features. The radiomics–clinical model, which incorporated Rad‐score, CEA, and CA199, exhibited favorable discrimination and calibration with areas under the receiver operating characteristic curve (AUC) of 0.920 (95% CI: 0.874–0.965) in the training cohorts and 0.855 (95% CI: 0.759–0.951) in the validation cohorts. And the AUC of the radiomics–clinical model was 0.849 (95% CI: 0.771–0.927) for the training cohorts and 0.780 (95% CI: 0.655–0.905) for the validation cohorts, the clinical model was 0.811 (95% CI: 0.718–0.905) for the training cohorts and 0.805 (95% CI: 0.645–0.965) for the validation cohorts. Moreover, decision curve analysis (DCA) further confirmed the clinical utility of the radiomics–clinical model. Conclusions The radiomics–clinical model performed satisfactory predictive performance, which can help improve clinical diagnosis performance and outcome prediction for SLM in RC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gsji完成签到,获得积分10
2秒前
12秒前
十一完成签到,获得积分10
29秒前
wlscj应助科研通管家采纳,获得20
30秒前
负责以山完成签到 ,获得积分10
33秒前
小糊涂仙儿完成签到 ,获得积分10
36秒前
37秒前
啪嗒大白球完成签到,获得积分10
39秒前
Temperature完成签到,获得积分10
39秒前
文献蚂蚁完成签到,获得积分10
39秒前
CGBIO完成签到,获得积分10
40秒前
真的OK完成签到,获得积分10
40秒前
朝夕之晖完成签到,获得积分10
41秒前
Syan完成签到,获得积分10
41秒前
qq完成签到,获得积分10
41秒前
yzz完成签到,获得积分10
41秒前
BowieHuang完成签到,获得积分10
41秒前
runtang完成签到,获得积分10
42秒前
王jyk完成签到,获得积分10
42秒前
cityhunter7777完成签到,获得积分10
42秒前
喜喜完成签到,获得积分10
43秒前
prrrratt完成签到,获得积分10
43秒前
zwzw完成签到,获得积分10
43秒前
洋芋饭饭完成签到,获得积分10
43秒前
呵呵哒完成签到,获得积分10
44秒前
BMG完成签到,获得积分10
44秒前
清水完成签到,获得积分10
44秒前
张浩林完成签到,获得积分10
45秒前
美满惜寒完成签到,获得积分10
45秒前
ys1008完成签到,获得积分10
46秒前
成就小蜜蜂完成签到 ,获得积分10
51秒前
58秒前
愤怒的念蕾完成签到,获得积分10
1分钟前
科研啄木鸟完成签到 ,获得积分10
1分钟前
聪明初彤完成签到,获得积分10
2分钟前
KGYM完成签到,获得积分20
2分钟前
KGYM发布了新的文献求助10
2分钟前
LiXF完成签到,获得积分10
2分钟前
1437594843完成签到 ,获得积分10
2分钟前
wang5945完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5368280
求助须知:如何正确求助?哪些是违规求助? 4496188
关于积分的说明 13996744
捐赠科研通 4401334
什么是DOI,文献DOI怎么找? 2417793
邀请新用户注册赠送积分活动 1410511
关于科研通互助平台的介绍 1386228