Endoscopic Rectal Ultrasound‐Based Radiomics Analysis for the Prediction of Synchronous Liver Metastasis in Patients With Primary Rectal Cancer

医学 无线电技术 逻辑回归 接收机工作特性 结直肠癌 放射科 超声波 临床试验 队列 内科学 肿瘤科 癌症
作者
Meiyan Mou,Ruizhi Gao,Yuquan Wu,Peng Lin,Hongxia Yin,Fenghuan Chen,Fen Huang,Rong Wen,Hong Yang,Yun He
出处
期刊:Journal of Ultrasound in Medicine [Wiley]
被引量:2
标识
DOI:10.1002/jum.16369
摘要

Objectives To develop and validate an ultrasound‐based radiomics model to predict synchronous liver metastases (SLM) in rectal cancer (RC) patients preoperatively. Methods Two hundred and thirty‐nine RC patients were included in this study and randomly divided into training and validation cohorts. A total of 5936 radiomics features were calculated on the basis of ultrasound images to build a radiomic model and obtain a radiomics score (Rad‐score) using logistic regression. Meanwhile, clinical characteristics were collected to construct a clinical model. The radiomics–clinical model was developed and validated by integrating the radiomics features with the selected clinical characteristics. The performances of three models were evaluated and compared through their discrimination, calibration, and clinical usefulness. Results The radiomics model was developed based on 13 radiomic features. The radiomics–clinical model, which incorporated Rad‐score, CEA, and CA199, exhibited favorable discrimination and calibration with areas under the receiver operating characteristic curve (AUC) of 0.920 (95% CI: 0.874–0.965) in the training cohorts and 0.855 (95% CI: 0.759–0.951) in the validation cohorts. And the AUC of the radiomics–clinical model was 0.849 (95% CI: 0.771–0.927) for the training cohorts and 0.780 (95% CI: 0.655–0.905) for the validation cohorts, the clinical model was 0.811 (95% CI: 0.718–0.905) for the training cohorts and 0.805 (95% CI: 0.645–0.965) for the validation cohorts. Moreover, decision curve analysis (DCA) further confirmed the clinical utility of the radiomics–clinical model. Conclusions The radiomics–clinical model performed satisfactory predictive performance, which can help improve clinical diagnosis performance and outcome prediction for SLM in RC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文承龙完成签到,获得积分20
3秒前
大军门诊完成签到,获得积分10
4秒前
周周完成签到 ,获得积分10
4秒前
好的昂完成签到,获得积分10
4秒前
罗大壮发布了新的文献求助10
5秒前
xiaoruixue完成签到,获得积分10
5秒前
阿策完成签到,获得积分10
6秒前
虚幻绿兰完成签到,获得积分10
6秒前
ycc完成签到,获得积分10
8秒前
LaffiteElla完成签到,获得积分10
8秒前
gexzygg完成签到,获得积分0
9秒前
孙小懒完成签到,获得积分10
10秒前
11秒前
天明完成签到,获得积分10
11秒前
十字路口完成签到 ,获得积分10
11秒前
峰宝宝完成签到,获得积分10
12秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
12秒前
muzi完成签到,获得积分10
13秒前
李海平完成签到 ,获得积分10
13秒前
ding7862完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
gapper完成签到 ,获得积分10
16秒前
17秒前
lym完成签到,获得积分10
18秒前
ECT完成签到,获得积分10
18秒前
MIST完成签到,获得积分10
18秒前
gexzygg发布了新的文献求助200
18秒前
Maribo完成签到,获得积分10
19秒前
康家旗完成签到,获得积分10
19秒前
QinCaibin完成签到,获得积分10
21秒前
倾听阳光完成签到 ,获得积分10
22秒前
好学的泷泷完成签到 ,获得积分10
25秒前
wweq完成签到,获得积分10
26秒前
xiaxia42完成签到 ,获得积分10
28秒前
逍遥呱呱完成签到 ,获得积分10
28秒前
LLL完成签到,获得积分10
29秒前
yanmh完成签到,获得积分10
30秒前
包容问雁发布了新的文献求助30
30秒前
研友_VZG7GZ应助开心采纳,获得10
31秒前
子辰完成签到,获得积分10
32秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450504
求助须知:如何正确求助?哪些是违规求助? 4558218
关于积分的说明 14265752
捐赠科研通 4481783
什么是DOI,文献DOI怎么找? 2454981
邀请新用户注册赠送积分活动 1445752
关于科研通互助平台的介绍 1421880