Stille反应
锡烷
化学
试剂
金属转移
组合化学
镍
催化作用
有机化学
作者
Zhenghong Zhou,Jimin Yang,Bo Yang,Zhi Yang,Lijuan Zhu,Xiao‐Song Xue,Feng Zhu
标识
DOI:10.1002/anie.202314832
摘要
The Stille cross-coupling reaction is one of the most common strategies for the construction of C-C bonds. Despite notable strides in the advancement of the Stille reaction, persistent challenges persist in hindering its greener evolution. These challenges encompass multiple facets, such as the high cost of precious metals and ligands, the demand for various additives, and the slow reaction rate. In comparison to the dominant palladium-catalysed Stille reactions, cost-effective nickel-catalysed systems lag behind, and enantioconvergent Stille reactions of racemic stannanes remain undeveloped. Herein, we present a pioneering instance of nickel-catalysed enantioconvergent Stille cross-coupling reactions of racemic stannane reagents, resulting in the formation of C-C bonds in good to high yields with excellent stereoselectivity. This strategy provides a practical, scalable, and operationally straightforward method for the synthesis of C(sp3 )-C(sp3 ), C(sp3 )-C(sp2 ), and C(sp3 )-C(sp) bonds under exceptionally mild conditions (without additives and bases, ambient temperature). The innovative use of synergistic photoredox/nickel catalysis enables a novel single-electron transmetalation process of stannane reagents, providing a new research paradigm of Stille reactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI