人气
影响力营销
百万-
营销
推论
广告
社会化媒体
业务
经济
计算机科学
心理学
人工智能
社会心理学
市场营销管理
关系营销
万维网
天文
物理
作者
Zijun Tian,Ryan Dew,Raghuram Iyengar
标识
DOI:10.1177/00222437231210267
摘要
Influencer marketing, in which companies sponsor social media personalities to promote their brands, has exploded in popularity in recent years. One common criterion for selecting an influencer partner is popularity. While some firms collaborate with “mega” influencers with millions of followers, other firms partner with “micro” influencers with only several thousand followers, but who also cost less to sponsor. To quantify this trade-off between popularity and cost, the authors develop a framework for estimating the follower elasticity of impressions (FEI), which measures a video's percentage gain in impressions (i.e., views) corresponding to a percentage increase in the number of followers of its creator. Computing FEI involves estimating the causal effect of an influencer's popularity on the view counts of their videos, which is achieved through a combination of (1) a unique data set collected from TikTok, (2) a representation learning model for quantifying video content, and (3) a machine learning–based causal inference method. The authors find that FEI is always positive, averaging .10, but often nonlinearly related to follower size. They examine the factors that predict variation in these FEI curves and show how firms can use these results to better determine influencer partnerships.
科研通智能强力驱动
Strongly Powered by AbleSci AI