AI language models in human reproduction research: exploring ChatGPT’s potential to assist academic writing

计算机科学 透明度(行为) 引用 数据科学 生成语法 语言模型 领域(数学) 人工智能 万维网 数学 计算机安全 纯数学
作者
Neli Semrl,Sarah Feigl,N Taumberger,T Bracic,Herbert Fluhr,Christophe Blockeel,Martina Kollmann
出处
期刊:Human Reproduction [Oxford University Press]
卷期号:38 (12): 2281-2288 被引量:15
标识
DOI:10.1093/humrep/dead207
摘要

Abstract Artificial intelligence (AI)-driven language models have the potential to serve as an educational tool, facilitate clinical decision-making, and support research and academic writing. The benefits of their use are yet to be evaluated and concerns have been raised regarding the accuracy, transparency, and ethical implications of using this AI technology in academic publishing. At the moment, Chat Generative Pre-trained Transformer (ChatGPT) is one of the most powerful and widely debated AI language models. Here, we discuss its feasibility to answer scientific questions, identify relevant literature, and assist writing in the field of human reproduction. With consideration of the scarcity of data on this topic, we assessed the feasibility of ChatGPT in academic writing, using data from six meta-analyses published in a leading journal of human reproduction. The text generated by ChatGPT was evaluated and compared to the original text by blinded reviewers. While ChatGPT can produce high-quality text and summarize information efficiently, its current ability to interpret data and answer scientific questions is limited, and it cannot be relied upon for a literature search or accurate source citation due to the potential spread of incomplete or false information. We advocate for open discussions within the reproductive medicine research community to explore the advantages and disadvantages of implementing this AI technology. Researchers and reviewers should be informed about AI language models, and we encourage authors to transparently disclose their use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助优秀乐松采纳,获得10
刚刚
mini小萝卜完成签到,获得积分20
1秒前
飞飞完成签到,获得积分10
1秒前
1秒前
555驳回了DemonZ应助
2秒前
igle发布了新的文献求助20
3秒前
Lemuel完成签到,获得积分10
3秒前
4秒前
4秒前
666发布了新的文献求助10
4秒前
JamesPei应助丫丫采纳,获得30
5秒前
5秒前
理来服发布了新的文献求助10
6秒前
7秒前
7秒前
Xutz完成签到,获得积分10
8秒前
9秒前
良辰应助个性的海秋采纳,获得10
9秒前
刘亦菲完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
hyw完成签到,获得积分10
12秒前
12秒前
qwe完成签到,获得积分10
13秒前
研友_Z60NmL完成签到,获得积分10
13秒前
共享精神应助Tomato采纳,获得10
13秒前
14秒前
顺毕发布了新的文献求助10
15秒前
笑点低冰夏完成签到,获得积分10
15秒前
qiaqia0326完成签到 ,获得积分10
16秒前
土豆金完成签到,获得积分20
16秒前
17秒前
吴北北完成签到,获得积分10
17秒前
感动归尘发布了新的文献求助10
17秒前
桐桐应助Hahawang采纳,获得10
17秒前
19秒前
19秒前
20秒前
Austin Wang发布了新的文献求助10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312684
求助须知:如何正确求助?哪些是违规求助? 2945170
关于积分的说明 8523532
捐赠科研通 2620981
什么是DOI,文献DOI怎么找? 1433226
科研通“疑难数据库(出版商)”最低求助积分说明 664923
邀请新用户注册赠送积分活动 650255