Using Abaqus with Python to Perform QSMA on the TMD Structure

非线性系统 结构工程 Python(编程语言) 有限元法 振动 情态动词 气动弹性 计算 计算机科学 工程类 材料科学 声学 算法 物理 复合材料 空气动力学 量子力学 航空航天工程 操作系统
作者
Brigham L. Bahr,Drithi Shetty,Matthew S. Allen
出处
期刊:Conference proceedings of the Society for Experimental Mechanics 卷期号:: 137-154
标识
DOI:10.1007/978-3-031-36999-5_19
摘要

Automotive and aerospace structures are increasingly making use of thin panels to reduce weight while seeking to maintain durability and minimize noise transmission. These panels can exhibit geometrically nonlinear behavior due to bending-stretching coupling. Additionally, the use of mechanical fasteners results in nonlinear hysteretic behavior due to friction between the contact surfaces. The Tribomechadynamics benchmark structure, consisting of a thin panel clamped at the ends using bolted joints, was developed as part of a research challenge to test the ability of the nonlinear dynamics community to predict the dynamic behavior of a structure with both friction and geometric nonlinearity. Simulating the dynamic response of a high-fidelity nonlinear FE model is highly computationally expensive, even for such a small-scale structure. Therefore, quasi-static methods have been gaining popularity. This paper builds on our previous efforts to predict the amplitude-dependent frequency and damping of the first bending mode of this structure using quasi-static modal analysis (QSMA). A 3D FE model of the TMD structure was analyzed. The paper shows how Python, an open-source programming language, can be integrated with a commercial finite element package to perform QSMA. This minimizes file input/output compared to our previous approach and speeds up the process. We also investigate using the pseudo-inverse of the mode shape matrix, rather than the mass matrix times the mode shape matrix, to further accelerate the computations. The QSMA results are used to fit a reduced-order model to the structure, which comprises a single DOF implicit condensation and expansion (or SICE) ROM for geometric nonlinearity and an Iwan model to characterize friction nonlinearity. This model is able to reproduce the nonlinear modal behavior with high fidelity while significantly reducing the computational cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆二龙完成签到 ,获得积分10
刚刚
Wang完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
插线板完成签到 ,获得积分10
1秒前
1秒前
illusion完成签到,获得积分10
2秒前
菜菜完成签到,获得积分10
2秒前
寒泉完成签到,获得积分10
2秒前
starry发布了新的文献求助10
2秒前
Mm完成签到,获得积分10
3秒前
3秒前
Uranus发布了新的文献求助10
3秒前
takumii完成签到,获得积分10
4秒前
4秒前
JiangSir完成签到,获得积分10
4秒前
十月的天空完成签到,获得积分10
5秒前
豆豆欢欢乐完成签到,获得积分10
5秒前
张张完成签到,获得积分10
5秒前
太叔明辉完成签到,获得积分10
5秒前
5秒前
6秒前
舒心的水卉完成签到,获得积分10
6秒前
星辰大海应助lixiaolan采纳,获得10
6秒前
隐形的傲易完成签到 ,获得积分10
7秒前
积极的千琴完成签到,获得积分10
7秒前
木瓜完成签到,获得积分10
7秒前
聂璐燕发布了新的文献求助10
7秒前
XCYIN完成签到,获得积分10
7秒前
liupai00完成签到,获得积分10
7秒前
7秒前
寒泉发布了新的文献求助10
7秒前
小白白完成签到,获得积分10
8秒前
哭泣的翠丝完成签到,获得积分10
8秒前
杏树完成签到 ,获得积分20
8秒前
8秒前
8秒前
冷静的小虾米完成签到 ,获得积分10
8秒前
Russell发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516727
求助须知:如何正确求助?哪些是违规求助? 4609546
关于积分的说明 14516808
捐赠科研通 4546412
什么是DOI,文献DOI怎么找? 2491188
邀请新用户注册赠送积分活动 1472886
关于科研通互助平台的介绍 1444818