已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Field trial of concurrent co-cable and co-trench optical fiber online identification based on ensemble learning

计算机科学 光缆 光纤 沟槽 现场试验 纤维 灵活性(工程) 材料科学 电信 图层(电子) 统计 数学 农学 复合材料 生物
作者
Yunbo Li,Dechao Zhang,Zhiwei Wang,Hui Yang,Tiankuo Yu,Qiuyan Yao,Sheng Liu,Dong Wang,Yang Zhao,Han Li,Deng Chen,Haotian Chen,Ruiwan Xu
出处
期刊:Optics Express [Optica Publishing Group]
卷期号:31 (26): 42850-42850 被引量:2
标识
DOI:10.1364/oe.506212
摘要

The co-route optical fibers, comprising both co-cable and co-trench fibers, pose a significant potential risk to network service quality assurance by operators. They are incapable of achieving high-precision recognition and visual state management. In this study, we gathered both static and dynamic optical fiber data using a linewidth tunable light source (LTLS) and introduced a multimodal detection architecture that applies ensemble learning to the collected data. This constitutes what we believe to be the first field trial of concurrent recognition of optical fibers found both in co-cables and co-trenches. To identify co-cable fibers, we employed a double-layer cascaded Random Forest (DLC-RF) model based on the static features of fibers. For co-trench fiber, the dynamic characteristics of fiber vibrations are utilized in combination with multiple independent curve similarity contrast learners for classifying tasks. The proposed architecture is capable of automatically detecting the condition of the optical fiber and actively identifying the same routing segment within the network, eliminating the need for human intervention and enabling the visualization of passive optical fiber resources. Finally, after rigorous testing and validation across 11 sites in a typical urban area, including aggregation and backbone scenarios within the operator's live network environments, we have confirmed that the solution's ability to identify co-routes is accurate, exceeding 95%. This provides strong empirical evidence of its effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
59完成签到 ,获得积分10
2秒前
3秒前
4秒前
拼搏灰狼完成签到 ,获得积分10
4秒前
7秒前
堪冥发布了新的文献求助10
9秒前
9秒前
9秒前
华仔应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
hyx完成签到,获得积分10
12秒前
英勇羿完成签到,获得积分10
13秒前
14秒前
顾矜应助Yuan采纳,获得10
14秒前
14秒前
17秒前
18秒前
hyx发布了新的文献求助10
20秒前
21秒前
共享精神应助虚心的不二采纳,获得10
21秒前
21秒前
keke驳回了Akim应助
22秒前
lili发布了新的文献求助10
22秒前
22秒前
esse1990发布了新的文献求助100
22秒前
堪冥完成签到,获得积分20
23秒前
逗号先生发布了新的文献求助10
23秒前
24秒前
24秒前
努力的淼淼完成签到 ,获得积分10
25秒前
浅浅发布了新的文献求助10
25秒前
guozizi发布了新的文献求助10
26秒前
26秒前
爱意都在完成签到,获得积分10
27秒前
Selina发布了新的文献求助10
28秒前
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968110
求助须知:如何正确求助?哪些是违规求助? 3513080
关于积分的说明 11166497
捐赠科研通 3248293
什么是DOI,文献DOI怎么找? 1794178
邀请新用户注册赠送积分活动 874903
科研通“疑难数据库(出版商)”最低求助积分说明 804629