Field trial of concurrent co-cable and co-trench optical fiber online identification based on ensemble learning

计算机科学 光缆 光纤 沟槽 现场试验 纤维 灵活性(工程) 材料科学 电信 图层(电子) 农学 数学 生物 统计 复合材料
作者
Yunbo Li,Dechao Zhang,Zhiwei Wang,Hui Yang,Tiankuo Yu,Qiuyan Yao,Sheng Liu,Dong Wang,Yang Zhao,Han Li,Deng Chen,Haotian Chen,Ruiwan Xu
出处
期刊:Optics Express [The Optical Society]
卷期号:31 (26): 42850-42850 被引量:2
标识
DOI:10.1364/oe.506212
摘要

The co-route optical fibers, comprising both co-cable and co-trench fibers, pose a significant potential risk to network service quality assurance by operators. They are incapable of achieving high-precision recognition and visual state management. In this study, we gathered both static and dynamic optical fiber data using a linewidth tunable light source (LTLS) and introduced a multimodal detection architecture that applies ensemble learning to the collected data. This constitutes what we believe to be the first field trial of concurrent recognition of optical fibers found both in co-cables and co-trenches. To identify co-cable fibers, we employed a double-layer cascaded Random Forest (DLC-RF) model based on the static features of fibers. For co-trench fiber, the dynamic characteristics of fiber vibrations are utilized in combination with multiple independent curve similarity contrast learners for classifying tasks. The proposed architecture is capable of automatically detecting the condition of the optical fiber and actively identifying the same routing segment within the network, eliminating the need for human intervention and enabling the visualization of passive optical fiber resources. Finally, after rigorous testing and validation across 11 sites in a typical urban area, including aggregation and backbone scenarios within the operator's live network environments, we have confirmed that the solution's ability to identify co-routes is accurate, exceeding 95%. This provides strong empirical evidence of its effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助感动的又槐采纳,获得10
刚刚
俏皮猫咪发布了新的文献求助10
刚刚
univ完成签到,获得积分10
1秒前
1秒前
CodeCraft应助武理采纳,获得10
2秒前
orixero应助同城代打采纳,获得10
2秒前
2秒前
科研通AI2S应助hihi采纳,获得10
3秒前
3秒前
3秒前
JamesPei应助秋之月采纳,获得10
4秒前
酷炫思天完成签到,获得积分20
4秒前
5秒前
健忘数据线完成签到 ,获得积分10
5秒前
脑洞疼应助忧伤的哲瀚采纳,获得10
5秒前
李健应助稳重的静丹采纳,获得30
5秒前
十一完成签到,获得积分10
6秒前
打打应助研友_8DAv0L采纳,获得10
6秒前
7秒前
杭慕晴发布了新的文献求助10
8秒前
Ash发布了新的文献求助10
8秒前
linxgyu完成签到,获得积分10
9秒前
酷炫思天发布了新的文献求助10
9秒前
10秒前
10秒前
zero_sky发布了新的文献求助10
12秒前
我的文献完成签到,获得积分10
13秒前
财来完成签到 ,获得积分10
13秒前
华仔应助yu采纳,获得10
13秒前
8R60d8完成签到,获得积分0
13秒前
彭于晏应助洁净的醉波采纳,获得10
14秒前
15秒前
寒冷荧荧发布了新的文献求助10
15秒前
同城代打完成签到,获得积分10
16秒前
完美世界应助Pangki采纳,获得10
16秒前
17秒前
badgerwithfisher完成签到,获得积分10
17秒前
18秒前
18秒前
18秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160823
求助须知:如何正确求助?哪些是违规求助? 2812005
关于积分的说明 7894119
捐赠科研通 2470886
什么是DOI,文献DOI怎么找? 1315786
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602053