CloudSim公司
计算机科学
云计算
分布式计算
调度(生产过程)
粒子群优化
作业车间调度
公平份额计划
动态优先级调度
算法
服务质量
操作系统
计算机网络
数学优化
数学
地铁列车时刻表
作者
Pratima Chapagai,Subarna Shakya
出处
期刊:Journal of ISMAC The Journal of IoT in Social, Mobile, Analytics, and Cloud
[Inventive Research Organization]
日期:2023-11-21
卷期号:5 (4): 286-301
标识
DOI:10.36548/jismac.2023.4.001
摘要
Cloud computing technologies have quickly changed how companies and organizations manage their IT resources. The core of this transformation has evolved as cloud datacenters, which offer scalable and affordable options for hosting and administering a variety of applications and services. One information technology typology that has been widely employed to deliver a range of services via the Internet is cloud computing. It guarantees simpler access to premium services and resources. Cloud systems' operation needs to be planned in order to effectively deliver services to individuals. Task scheduling seeks to maximize system throughput and distribute diverse computational resources to software programs. The unpredictability of the scenario grows as the task and has a strong potential for successful resolution. The study begins with an experimental setup to analyse the various performance metrics of task scheduling algorithms. Every experiment has several important stages. To replicate scenarios found in the real world where jobs are divided across many computing resources, the tasks are assigned to available data centers. A number of experiments were carried out to analyse the performance of First Come First Service (FCFS), Shortest Job First (SJF), Round Robin (RR) and Particle Swarm Optimization (PSO) scheduling algorithms using the parameters: makespan, average completion time, average waiting time, and average cost consumption. Thus, this study provides a description of task scheduling and the performance analysis of algorithms to task scheduling that is employed in cloud computing environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI