Tumor segmentation via enhanced area growth algorithm for lung CT images

阈值 计算机科学 分割 边界(拓扑) 区域增长 算法 点(几何) 人工智能 肺肿瘤 计算机视觉 图像分割 肺癌 数学 图像(数学) 几何学 医学 尺度空间分割 内科学 数学分析
作者
Abdollah Khorshidi
出处
期刊:BMC Medical Imaging [Springer Nature]
卷期号:23 (1) 被引量:3
标识
DOI:10.1186/s12880-023-01126-y
摘要

Abstract Background Since lung tumors are in dynamic conditions, the study of tumor growth and its changes is of great importance in primary diagnosis. Methods Enhanced area growth (EAG) algorithm is introduced to segment the lung tumor in 2D and 3D modes on 60 patients CT images from four different databases by MATLAB software. The contrast augmentation, color intensity and maximum primary tumor radius determination, thresholding, start and neighbor points’ designation in an array, and then modifying the points in the braid on average are the early steps of the proposed algorithm. To determine the new tumor boundaries, the maximum distance from the color-intensity center point of the primary tumor to the modified points is appointed via considering a larger target region and new threshold. The tumor center is divided into different subsections and then all previous stages are repeated from new designated points to define diverse boundaries for the tumor. An interpolation between these boundaries creates a new tumor boundary. The intersections with the tumor boundaries are firmed for edge correction phase, after drawing diverse lines from the tumor center at relevant angles. Each of the new regions is annexed to the core region to achieve a segmented tumor surface by meeting certain conditions. Results The multipoint-growth-starting-point grouping fashioned a desired consequence in the precise delineation of the tumor. The proposed algorithm enhanced tumor identification by more than 16% with a reasonable accuracy acceptance rate. At the same time, it largely assurances the independence of the last outcome from the starting point. By significance difference of p < 0.05, the dice coefficients were 0.80 ± 0.02 and 0.92 ± 0.03, respectively, for primary and enhanced algorithms. Lung area determination alongside automatic thresholding and also starting from several points along with edge improvement may reduce human errors in radiologists’ interpretation of tumor areas and selection of the algorithm’s starting point. Conclusions The proposed algorithm enhanced tumor detection by more than 18% with a sufficient acceptance ratio of accuracy. Since the enhanced algorithm is independent of matrix size and image thickness, it is very likely that it can be easily applied to other contiguous tumor images. Trial registration PAZHOUHAN, PAZHOUHAN98000032. Registered 4 January 2021, http://pazhouhan.gerums.ac.ir/webreclist/view.action?webreclist_code=19300

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姜夔发布了新的文献求助10
1秒前
三方完成签到,获得积分10
1秒前
wanci应助freesialll采纳,获得10
2秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
Akim应助7890733采纳,获得10
5秒前
6秒前
Jasper应助付ffgseg采纳,获得10
6秒前
黎先生完成签到,获得积分10
6秒前
陈陈陈完成签到 ,获得积分10
7秒前
8秒前
暮色晚钟完成签到,获得积分10
8秒前
8秒前
小乔应助qdong采纳,获得10
10秒前
gkq完成签到,获得积分10
10秒前
王柯予完成签到,获得积分10
10秒前
autumn完成签到,获得积分10
10秒前
郑恒松发布了新的文献求助10
11秒前
一二完成签到,获得积分10
11秒前
刘步遥完成签到 ,获得积分10
11秒前
Jervis完成签到 ,获得积分10
11秒前
11秒前
12秒前
脑洞疼应助bio-tang采纳,获得10
13秒前
14秒前
小兔叽完成签到,获得积分10
14秒前
15秒前
蓝lan完成签到,获得积分20
16秒前
swimming完成签到 ,获得积分10
16秒前
17秒前
灵萱完成签到,获得积分20
18秒前
糟糕的乐驹完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
Buster发布了新的文献求助10
18秒前
freesialll发布了新的文献求助10
18秒前
19秒前
suna完成签到 ,获得积分10
19秒前
luster发布了新的文献求助10
21秒前
7890733完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646573
求助须知:如何正确求助?哪些是违规求助? 4771751
关于积分的说明 15035677
捐赠科研通 4805321
什么是DOI,文献DOI怎么找? 2569625
邀请新用户注册赠送积分活动 1526601
关于科研通互助平台的介绍 1485858