已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Tumor segmentation via enhanced area growth algorithm for lung CT images

阈值 计算机科学 分割 边界(拓扑) 区域增长 算法 点(几何) 人工智能 肺肿瘤 计算机视觉 图像分割 肺癌 数学 图像(数学) 几何学 医学 尺度空间分割 内科学 数学分析
作者
Abdollah Khorshidi
出处
期刊:BMC Medical Imaging [Springer Nature]
卷期号:23 (1) 被引量:3
标识
DOI:10.1186/s12880-023-01126-y
摘要

Abstract Background Since lung tumors are in dynamic conditions, the study of tumor growth and its changes is of great importance in primary diagnosis. Methods Enhanced area growth (EAG) algorithm is introduced to segment the lung tumor in 2D and 3D modes on 60 patients CT images from four different databases by MATLAB software. The contrast augmentation, color intensity and maximum primary tumor radius determination, thresholding, start and neighbor points’ designation in an array, and then modifying the points in the braid on average are the early steps of the proposed algorithm. To determine the new tumor boundaries, the maximum distance from the color-intensity center point of the primary tumor to the modified points is appointed via considering a larger target region and new threshold. The tumor center is divided into different subsections and then all previous stages are repeated from new designated points to define diverse boundaries for the tumor. An interpolation between these boundaries creates a new tumor boundary. The intersections with the tumor boundaries are firmed for edge correction phase, after drawing diverse lines from the tumor center at relevant angles. Each of the new regions is annexed to the core region to achieve a segmented tumor surface by meeting certain conditions. Results The multipoint-growth-starting-point grouping fashioned a desired consequence in the precise delineation of the tumor. The proposed algorithm enhanced tumor identification by more than 16% with a reasonable accuracy acceptance rate. At the same time, it largely assurances the independence of the last outcome from the starting point. By significance difference of p < 0.05, the dice coefficients were 0.80 ± 0.02 and 0.92 ± 0.03, respectively, for primary and enhanced algorithms. Lung area determination alongside automatic thresholding and also starting from several points along with edge improvement may reduce human errors in radiologists’ interpretation of tumor areas and selection of the algorithm’s starting point. Conclusions The proposed algorithm enhanced tumor detection by more than 18% with a sufficient acceptance ratio of accuracy. Since the enhanced algorithm is independent of matrix size and image thickness, it is very likely that it can be easily applied to other contiguous tumor images. Trial registration PAZHOUHAN, PAZHOUHAN98000032. Registered 4 January 2021, http://pazhouhan.gerums.ac.ir/webreclist/view.action?webreclist_code=19300
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
安详初蓝完成签到 ,获得积分10
2秒前
张杠杠完成签到 ,获得积分10
3秒前
Owen应助yico采纳,获得10
4秒前
修管子完成签到 ,获得积分10
5秒前
现代书雪发布了新的文献求助10
6秒前
吴嘉俊完成签到 ,获得积分10
7秒前
7秒前
所所应助程风破浪采纳,获得10
7秒前
jasonjiang完成签到 ,获得积分10
7秒前
起风了完成签到 ,获得积分10
8秒前
8秒前
9秒前
10秒前
11秒前
小二郎应助现代书雪采纳,获得10
12秒前
哈哈哈哈完成签到 ,获得积分10
12秒前
五月完成签到 ,获得积分10
13秒前
chen完成签到 ,获得积分10
13秒前
panziye发布了新的文献求助20
15秒前
金考卷完成签到,获得积分10
16秒前
16秒前
赘婿应助LLLL采纳,获得10
17秒前
yico发布了新的文献求助10
17秒前
李李发布了新的文献求助10
19秒前
attention完成签到 ,获得积分10
20秒前
研友_VZG7GZ应助meixi采纳,获得10
23秒前
结实的涵柏完成签到 ,获得积分10
23秒前
25秒前
27秒前
29秒前
rofsc完成签到 ,获得积分10
29秒前
chuanming完成签到,获得积分0
30秒前
ding应助科研通管家采纳,获得10
30秒前
30秒前
现代书雪完成签到,获得积分20
31秒前
完美世界应助yico采纳,获得10
32秒前
LLLL发布了新的文献求助10
33秒前
YHF2发布了新的文献求助10
33秒前
儿学化学打断腿完成签到,获得积分10
33秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3130002
求助须知:如何正确求助?哪些是违规求助? 2780801
关于积分的说明 7750187
捐赠科研通 2436031
什么是DOI,文献DOI怎么找? 1294484
科研通“疑难数据库(出版商)”最低求助积分说明 623703
版权声明 600570