An end-to-end workflow for multiplexed image processing and analysis

生物导体 计算机科学 工作流程 预处理器 可视化 分割 人工智能 降维 模式识别(心理学) 数据挖掘 计算机视觉 数据库 基因 生物化学 化学
作者
Jonas Windhager,Vito Riccardo Tomaso Zanotelli,Daniel Schulz,Lasse Meyer,Michelle Daniel,Bernd Bodenmiller,Nils Eling
出处
期刊:Nature Protocols [Springer Nature]
卷期号:18 (11): 3565-3613 被引量:209
标识
DOI:10.1038/s41596-023-00881-0
摘要

Multiplexed imaging enables the simultaneous spatial profiling of dozens of biological molecules in tissues at single-cell resolution. Extracting biologically relevant information, such as the spatial distribution of cell phenotypes from multiplexed tissue imaging data, involves a number of computational tasks, including image segmentation, feature extraction and spatially resolved single-cell analysis. Here, we present an end-to-end workflow for multiplexed tissue image processing and analysis that integrates previously developed computational tools to enable these tasks in a user-friendly and customizable fashion. For data quality assessment, we highlight the utility of napari-imc for interactively inspecting raw imaging data and the cytomapper R/Bioconductor package for image visualization in R. Raw data preprocessing, image segmentation and feature extraction are performed using the steinbock toolkit. We showcase two alternative approaches for segmenting cells on the basis of supervised pixel classification and pretrained deep learning models. The extracted single-cell data are then read, processed and analyzed in R. The protocol describes the use of community-established data containers, facilitating the application of R/Bioconductor packages for dimensionality reduction, single-cell visualization and phenotyping. We provide instructions for performing spatially resolved single-cell analysis, including community analysis, cellular neighborhood detection and cell–cell interaction testing using the imcRtools R/Bioconductor package. The workflow has been previously applied to imaging mass cytometry data, but can be easily adapted to other highly multiplexed imaging technologies. This protocol can be implemented by researchers with basic bioinformatics training, and the analysis of the provided dataset can be completed within 5–6 h. An extended version is available at https://bodenmillergroup.github.io/IMCDataAnalysis/ . An integrated workflow for multiplexed tissue image processing and analysis, including interactive inspection of raw data, cell segmentation, feature extraction, single-cell analysis and spatial analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助old杜采纳,获得10
刚刚
2秒前
jkq发布了新的文献求助10
2秒前
田様应助jiaozitop采纳,获得10
3秒前
火翟丰丰山心完成签到,获得积分10
3秒前
3秒前
汉堡包应助阿滕采纳,获得50
3秒前
Jasper应助wjq采纳,获得10
4秒前
传奇3应助zz采纳,获得10
4秒前
科研通AI6应助怡然的天思采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
桐桐应助xupt唐僧采纳,获得10
6秒前
烟花应助月星采纳,获得10
7秒前
哈哈发布了新的文献求助20
9秒前
9秒前
march发布了新的文献求助10
9秒前
Lucas应助zhzhzh采纳,获得10
10秒前
11秒前
11秒前
11秒前
12秒前
丘比特应助jkq采纳,获得10
12秒前
李健的粉丝团团长应助zz采纳,获得10
13秒前
14秒前
14秒前
衡珩蘅发布了新的文献求助30
15秒前
15秒前
高高的起眸完成签到,获得积分10
15秒前
15秒前
林夕发布了新的文献求助10
16秒前
16秒前
852应助饱满的琦采纳,获得10
16秒前
阿滕发布了新的文献求助50
16秒前
17秒前
负责的魔镜完成签到,获得积分10
17秒前
asteria211完成签到,获得积分10
17秒前
酷波er应助wangli采纳,获得10
17秒前
kylin发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663626
求助须知:如何正确求助?哪些是违规求助? 4851558
关于积分的说明 15105133
捐赠科研通 4821911
什么是DOI,文献DOI怎么找? 2581045
邀请新用户注册赠送积分活动 1535206
关于科研通互助平台的介绍 1493587