An end-to-end workflow for multiplexed image processing and analysis

生物导体 计算机科学 工作流程 预处理器 可视化 分割 人工智能 降维 模式识别(心理学) 数据挖掘 计算机视觉 数据库 基因 生物化学 化学
作者
Jonas Windhager,Vito Riccardo Tomaso Zanotelli,Daniel Schulz,Lasse Meyer,Michelle Daniel,Bernd Bodenmiller,Nils Eling
出处
期刊:Nature Protocols [Springer Nature]
卷期号:18 (11): 3565-3613 被引量:209
标识
DOI:10.1038/s41596-023-00881-0
摘要

Multiplexed imaging enables the simultaneous spatial profiling of dozens of biological molecules in tissues at single-cell resolution. Extracting biologically relevant information, such as the spatial distribution of cell phenotypes from multiplexed tissue imaging data, involves a number of computational tasks, including image segmentation, feature extraction and spatially resolved single-cell analysis. Here, we present an end-to-end workflow for multiplexed tissue image processing and analysis that integrates previously developed computational tools to enable these tasks in a user-friendly and customizable fashion. For data quality assessment, we highlight the utility of napari-imc for interactively inspecting raw imaging data and the cytomapper R/Bioconductor package for image visualization in R. Raw data preprocessing, image segmentation and feature extraction are performed using the steinbock toolkit. We showcase two alternative approaches for segmenting cells on the basis of supervised pixel classification and pretrained deep learning models. The extracted single-cell data are then read, processed and analyzed in R. The protocol describes the use of community-established data containers, facilitating the application of R/Bioconductor packages for dimensionality reduction, single-cell visualization and phenotyping. We provide instructions for performing spatially resolved single-cell analysis, including community analysis, cellular neighborhood detection and cell–cell interaction testing using the imcRtools R/Bioconductor package. The workflow has been previously applied to imaging mass cytometry data, but can be easily adapted to other highly multiplexed imaging technologies. This protocol can be implemented by researchers with basic bioinformatics training, and the analysis of the provided dataset can be completed within 5–6 h. An extended version is available at https://bodenmillergroup.github.io/IMCDataAnalysis/ . An integrated workflow for multiplexed tissue image processing and analysis, including interactive inspection of raw data, cell segmentation, feature extraction, single-cell analysis and spatial analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
乔雨欣应助科研通管家采纳,获得10
2秒前
zz应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
Dali应助科研通管家采纳,获得10
3秒前
三岁应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
wy.he应助科研通管家采纳,获得10
3秒前
Silence发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
3秒前
红烧又应助科研通管家采纳,获得10
3秒前
zz应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
霜降应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
霜降应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
深情安青应助1GE采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
香蕉诗蕊应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
英俊的铭应助港崽宝宝采纳,获得30
5秒前
5秒前
许小仙儿完成签到,获得积分10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648206
求助须知:如何正确求助?哪些是违规求助? 4775141
关于积分的说明 15043236
捐赠科研通 4807251
什么是DOI,文献DOI怎么找? 2570608
邀请新用户注册赠送积分活动 1527392
关于科研通互助平台的介绍 1486407