An interpretable ensemble learning model facilitates early risk stratification of ischemic stroke in intensive care unit: Development and external validation of ICU-ISPM

重症监护室 医学 危险分层 心理干预 急诊医学 机器学习 计算机科学 重症监护医学 人工智能 预测建模 内科学 精神科
作者
Wei Hu,Tingting Jin,Ziqi Pan,Huimin Xu,Lingyan Yu,Tingting Chen,Wei Zhang,Huifang Jiang,Wenjun Yang,Junjun Xu,Feng Zhu,Haibin Dai
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:166: 107577-107577 被引量:8
标识
DOI:10.1016/j.compbiomed.2023.107577
摘要

Ischemic stroke (IS) is a common and severe condition that requires intensive care unit (ICU) admission, with high mortality and variable prognosis. Accurate and reliable predictive tools that enable early risk stratification can facilitate interventions to improve patient outcomes; however, such tools are currently lacking. In this study, we developed and validated novel ensemble learning models based on soft voting and stacking methods to predict in-hospital mortality from IS in the ICU using two public databases: MIMIC-IV and eICU-CRD. Additionally, we identified the key predictors of mortality and developed a user-friendly online prediction tool for clinical use. The soft voting ensemble model, named ICU-ISPM, achieved an AUROC of 0.861 (95% CI: 0.829–0.892) and 0.844 (95% CI: 0.819–0.869) in the internal and external test cohorts, respectively. It significantly outperformed the APACHE scoring system and was more robust than individual models. ICU-ISPM obtained the highest performance compared to other models in similar studies. Using the SHAP method, the model was interpretable, revealing that GCS score, age, and intubation were the most important predictors of mortality. This model also provided a risk stratification system that can effectively distinguish between low-, medium-, and high-risk patients. Therefore, the ICU-ISPM is an accurate, reliable, interpretable, and clinically applicable tool, which is expected to assist clinicians in stratifying IS patients by the risk of mortality and rationally allocating medical resources. Based on ICU-ISPM, an online risk prediction tool was further developed, which was freely available at: http://ispm.idrblab.cn/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
发呆的小号完成签到 ,获得积分10
刚刚
刚刚
刚刚
Lucas应助研友_841rlL采纳,获得10
刚刚
CipherSage应助范芙蓉采纳,获得10
1秒前
科研通AI5应助曾经初珍采纳,获得10
1秒前
夕颜如玉发布了新的文献求助10
1秒前
2秒前
小达完成签到 ,获得积分10
2秒前
2秒前
赘婿应助行错骤回头采纳,获得10
3秒前
华仔应助syyw2021采纳,获得10
3秒前
Ava应助会笑的猪猪猫采纳,获得10
3秒前
闪闪盼兰发布了新的文献求助10
4秒前
yzxzdm发布了新的文献求助10
4秒前
沙拉依丁完成签到,获得积分10
5秒前
科研通AI2S应助lbwertyty采纳,获得10
5秒前
6秒前
Re发布了新的文献求助10
6秒前
6秒前
巫易完成签到,获得积分10
6秒前
Cool完成签到,获得积分10
6秒前
7秒前
CipherSage应助m7m采纳,获得10
7秒前
Aikesi完成签到,获得积分10
8秒前
CipherSage应助张姝凤采纳,获得10
8秒前
9秒前
10秒前
杯装冰块发布了新的文献求助10
10秒前
夕颜如玉完成签到,获得积分10
10秒前
11秒前
大方明杰发布了新的文献求助50
11秒前
vv完成签到 ,获得积分10
12秒前
科研通AI5应助GUGU采纳,获得10
13秒前
深情安青应助starry采纳,获得10
13秒前
得闲发布了新的文献求助10
13秒前
W哇完成签到,获得积分10
13秒前
14秒前
Lucas应助yzxzdm采纳,获得10
14秒前
木棉发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515364
求助须知:如何正确求助?哪些是违规求助? 3097702
关于积分的说明 9236476
捐赠科研通 2792578
什么是DOI,文献DOI怎么找? 1532606
邀请新用户注册赠送积分活动 712198
科研通“疑难数据库(出版商)”最低求助积分说明 707160