An interpretable ensemble learning model facilitates early risk stratification of ischemic stroke in intensive care unit: Development and external validation of ICU-ISPM

重症监护室 医学 危险分层 心理干预 急诊医学 机器学习 计算机科学 重症监护医学 人工智能 预测建模 内科学 精神科
作者
Wei Hu,Tingting Jin,Ziqi Pan,Huimin Xu,Lingyan Yu,Tingting Chen,Wei Zhang,Huifang Jiang,Wenjun Yang,Junjun Xu,Feng Zhu,Haibin Dai
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:166: 107577-107577 被引量:8
标识
DOI:10.1016/j.compbiomed.2023.107577
摘要

Ischemic stroke (IS) is a common and severe condition that requires intensive care unit (ICU) admission, with high mortality and variable prognosis. Accurate and reliable predictive tools that enable early risk stratification can facilitate interventions to improve patient outcomes; however, such tools are currently lacking. In this study, we developed and validated novel ensemble learning models based on soft voting and stacking methods to predict in-hospital mortality from IS in the ICU using two public databases: MIMIC-IV and eICU-CRD. Additionally, we identified the key predictors of mortality and developed a user-friendly online prediction tool for clinical use. The soft voting ensemble model, named ICU-ISPM, achieved an AUROC of 0.861 (95% CI: 0.829–0.892) and 0.844 (95% CI: 0.819–0.869) in the internal and external test cohorts, respectively. It significantly outperformed the APACHE scoring system and was more robust than individual models. ICU-ISPM obtained the highest performance compared to other models in similar studies. Using the SHAP method, the model was interpretable, revealing that GCS score, age, and intubation were the most important predictors of mortality. This model also provided a risk stratification system that can effectively distinguish between low-, medium-, and high-risk patients. Therefore, the ICU-ISPM is an accurate, reliable, interpretable, and clinically applicable tool, which is expected to assist clinicians in stratifying IS patients by the risk of mortality and rationally allocating medical resources. Based on ICU-ISPM, an online risk prediction tool was further developed, which was freely available at: http://ispm.idrblab.cn/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大力初珍发布了新的文献求助10
1秒前
diyanbruker发布了新的文献求助10
1秒前
失眠乐双发布了新的文献求助10
2秒前
科研通AI5应助星星的梦采纳,获得10
2秒前
小星星发布了新的文献求助10
2秒前
2秒前
3秒前
闪闪小小发布了新的文献求助10
3秒前
4秒前
5秒前
shell完成签到,获得积分10
5秒前
LIN完成签到,获得积分10
5秒前
专一的小馒头完成签到,获得积分10
5秒前
汪洋发布了新的文献求助10
7秒前
7秒前
Somnolence咩发布了新的文献求助10
7秒前
8秒前
9秒前
10秒前
NexusExplorer应助呐呐呐采纳,获得10
10秒前
DukeTao完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
杨旺发布了新的文献求助10
12秒前
冷静绿旋发布了新的文献求助10
13秒前
Doctorque发布了新的文献求助20
13秒前
失眠乐双完成签到,获得积分20
13秒前
阿飘应助轻松无剑采纳,获得10
13秒前
14秒前
14秒前
简化为发布了新的文献求助30
14秒前
于陶晶发布了新的文献求助20
14秒前
16秒前
坚强雅绿应助ellieou采纳,获得10
16秒前
17秒前
17秒前
18秒前
土匪猫发布了新的文献求助10
18秒前
18秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3760168
求助须知:如何正确求助?哪些是违规求助? 3303468
关于积分的说明 10126557
捐赠科研通 3017770
什么是DOI,文献DOI怎么找? 1657201
邀请新用户注册赠送积分活动 791111
科研通“疑难数据库(出版商)”最低求助积分说明 754142