A SwinTransformer-Based Segmentation Framework With Self-Supervised Strategy for Post-Operative Prostate Cancer Radiotherapy

分割 前列腺切除术 放射治疗 计算机科学 前列腺癌 人工智能 医学 图像分割 放射科 医学物理学 癌症 内科学
作者
Miao Dong,Jielang Li,Meng Dou,Linjie Fu,Yu Yao,X. Wang,Feng Wen,Yali Shen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 403-414 被引量:1
标识
DOI:10.1109/jbhi.2023.3329111
摘要

Radical prostatectomy (prostate removal) is a standard treatment for clinically localized prostate cancer and is often followed by postoperative radiotherapy. Postoperative radiotherapy requires accurate delineation of the clinical target volume (CTV) and lymph node drainage area (LNA) on computed tomography (CT) images. However, the CTV contour cannot be determined by the simple prostate expansion after resection of the prostate in the CT image. Constrained by this factor, the manual delineation process in postoperative radiotherapy is more time-consuming and challenging than in radical radiotherapy. In addition, CTV and LNA have no boundaries that can be distinguished by pixel values in CT images, and existing automatic segmentation models cannot get satisfactory results. Radiation oncologists generally determine CTV and LNA profiles according to clinical consensus and guidelines regarding surrounding organs at risk (OARs). In this work, we design a cascade segmentation block to explicitly establish correlations between CTV, LNA, and OARs, leveraging OARs features to guide CTV and LNA segmentation. Furthermore, inspired by the success of the self-attention mechanism and self-supervised learning, we adopt SwinTransformer as our backbone and propose a pure SwinTransformer-based segmentation network with self-supervised learning strategies. We performed extensive quantitative and qualitative evaluations of the proposed method. Compared to other competitive segmentation models, our model shows higher dice scores with minor standard deviations, and the detailed visualization results are more consistent with the ground truth. We believe this work can provide a feasible solution to this problem, making the postoperative radiotherapy process more efficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
3秒前
7秒前
天玄应助一啊鸭采纳,获得10
7秒前
浅浅发布了新的文献求助10
8秒前
8秒前
1234567xjy发布了新的文献求助20
10秒前
CodeCraft应助yangts2021采纳,获得10
10秒前
qq发布了新的文献求助30
10秒前
小瀦櫫完成签到,获得积分10
10秒前
11秒前
森林木发布了新的文献求助10
12秒前
老师心腹大患完成签到,获得积分10
14秒前
15秒前
15秒前
小鹿完成签到,获得积分10
15秒前
柏不斜发布了新的文献求助10
15秒前
16秒前
17秒前
林林完成签到 ,获得积分10
18秒前
核桃花生奶兔完成签到 ,获得积分10
19秒前
唐展通发布了新的文献求助10
20秒前
20秒前
111发布了新的文献求助10
21秒前
刻苦的荆完成签到,获得积分10
21秒前
可爱的函函应助周芷卉采纳,获得10
22秒前
沉静若山完成签到 ,获得积分10
28秒前
28秒前
小蜜峰儿完成签到,获得积分10
28秒前
乐乐应助柏不斜采纳,获得10
28秒前
30秒前
wyn发布了新的文献求助10
31秒前
31秒前
qq发布了新的文献求助10
31秒前
32秒前
飞跃完成签到 ,获得积分10
33秒前
34秒前
冯丽雪发布了新的文献求助10
37秒前
白洛完成签到,获得积分20
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138914
求助须知:如何正确求助?哪些是违规求助? 2789858
关于积分的说明 7792896
捐赠科研通 2446244
什么是DOI,文献DOI怎么找? 1301004
科研通“疑难数据库(出版商)”最低求助积分说明 626066
版权声明 601079