微塑料
氧化应激
化学
毒性
活性氧
丙二醛
光老化
环境化学
食品科学
生物化学
生物
有机化学
遗传学
作者
Hanlin Cao,Ping Ding,Xintong Li,Chushan Huang,Xin Li,Feng Chen,Lijuan Zhang,Jianying Qi
标识
DOI:10.1016/j.jhazmat.2023.132990
摘要
Microplastics (MPs) are ubiquitous environmental contaminants that exerting multiple toxicological effects. Most studies have focused primarily on the models of unaged MPs and lack environmental relevance. The generation and toxicity of environmentally persistent free radicals (EPFRs) on photoaging MPs from disposable plastic cups (DPC-MPs) have not been well studied. Here, the formation of EPFRs on photoaged DPC-MPs and their toxic effects in nematodes were investigated. UV irradiation generated EPFRs, which influenced the characterization of DPC-MPs. Exposure to photoaged DPC-MPs at environmentally relevant concentrations (100-1000 μg/L) reduced the locomotion behavior, body length, and brood size. The Reactive oxygen species (ROS) production, lipofuscin accumulation, malondialdehyde (MDA), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels were increased along with the downregulation of the expression levels of associated genes, such as clk-1, clt-1, and gst-4,in nematodes. Moreover, the toxicity and oxidative stress response of nematodes were significantly inhibited due to N-acetyl-l-cysteine (NAC). Pearson's correlation analysis revealed that the oxidative stress was significantly associated with adverse physiological effects. Therefore, EPFRs on photoaged DPC-MPs cause toxicity in nematodes, and oxidative stress is important for regulating toxicity. This study offers novel insights into the potential risks of DPC-MPs under UV irradiation, highlighting the need to consider the role of EPFRs in toxicity assessments of DPC-MPs.
科研通智能强力驱动
Strongly Powered by AbleSci AI