Brain age predicted using graph convolutional neural network explains neurodevelopmental trajectory in preterm neonates

医学 胎龄 儿科 神经影像学 怀孕 精神科 遗传学 生物
作者
Mengting Liu,Minhua Lu,Sharon Kim,Hyun Ju Lee,Ben A. Duffy,Shiyu Yuan,Yaqiong Chai,James H. Cole,Xiaotong Wu,Arthur W. Toga,Neda Jahanshad,Dawn Gano,A. James Barkovich,Duan Xu,Hosung Kim
出处
期刊:European Radiology [Springer Nature]
卷期号:34 (6): 3601-3611 被引量:8
标识
DOI:10.1007/s00330-023-10414-8
摘要

Abstract Objectives Dramatic brain morphological changes occur throughout the third trimester of gestation. In this study, we investigated whether the predicted brain age (PBA) derived from graph convolutional network (GCN) that accounts for cortical morphometrics in third trimester is associated with postnatal abnormalities and neurodevelopmental outcome. Methods In total, 577 T1 MRI scans of preterm neonates from two different datasets were analyzed; the NEOCIVET pipeline generated cortical surfaces and morphological features, which were then fed to the GCN to predict brain age. The brain age index (BAI; PBA minus chronological age) was used to determine the relationships among preterm birth (i.e., birthweight and birth age), perinatal brain injuries, postnatal events/clinical conditions, BAI at postnatal scan, and neurodevelopmental scores at 30 months. Results Brain morphology and GCN-based age prediction of preterm neonates without brain lesions (mean absolute error [MAE]: 0.96 weeks) outperformed conventional machine learning methods using no topological information. Structural equation models (SEM) showed that BAI mediated the influence of preterm birth and postnatal clinical factors, but not perinatal brain injuries, on neurodevelopmental outcome at 30 months of age. Conclusions Brain morphology may be clinically meaningful in measuring brain age, as it relates to postnatal factors, and predicting neurodevelopmental outcome. Clinical relevance statement Understanding the neurodevelopmental trajectory of preterm neonates through the prediction of brain age using a graph convolutional neural network may allow for earlier detection of potential developmental abnormalities and improved interventions, consequently enhancing the prognosis and quality of life in this vulnerable population. Key Points •Brain age in preterm neonates predicted using a graph convolutional network with brain morphological changes mediates the pre-scan risk factors and post-scan neurodevelopmental outcomes. •Predicted brain age oriented from conventional deep learning approaches, which indicates the neurodevelopmental status in neonates, shows a lack of sensitivity to perinatal risk factors and predicting neurodevelopmental outcomes. •The new brain age index based on brain morphology and graph convolutional network enhances the accuracy and clinical interpretation of predicted brain age for neonates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XxxPessimist1c完成签到,获得积分10
刚刚
别吃我的鱼完成签到,获得积分10
刚刚
guoxuefan完成签到,获得积分10
刚刚
西西弗斯完成签到,获得积分10
刚刚
追寻紫安完成签到,获得积分10
1秒前
1秒前
AJ完成签到 ,获得积分10
2秒前
彭于晏应助wangyi采纳,获得30
2秒前
一进实验室就犯困完成签到,获得积分10
3秒前
一方通行完成签到 ,获得积分10
3秒前
JamesPei应助蔺契采纳,获得10
3秒前
罗_完成签到,获得积分0
4秒前
小Q啊啾完成签到,获得积分20
4秒前
啊七飞完成签到,获得积分10
4秒前
Singularity应助ss采纳,获得20
4秒前
Rae sremer完成签到,获得积分10
4秒前
5秒前
昏睡的白桃完成签到,获得积分10
6秒前
maxj123456完成签到,获得积分10
6秒前
Akim应助萤火虫采纳,获得10
6秒前
水深三英尺完成签到 ,获得积分10
7秒前
犹豫小海豚完成签到,获得积分10
8秒前
笨鸟先飞发布了新的文献求助10
8秒前
科研通AI2S应助瑞_采纳,获得10
8秒前
9秒前
好名字完成签到 ,获得积分10
10秒前
左丘不评完成签到 ,获得积分0
11秒前
取什么好呢完成签到,获得积分10
11秒前
任性完成签到,获得积分10
12秒前
爱撒娇的孤丹完成签到 ,获得积分10
12秒前
159完成签到,获得积分10
12秒前
甜甜圈完成签到,获得积分10
13秒前
忧伤的灯泡完成签到,获得积分20
13秒前
刘耳朵完成签到,获得积分10
13秒前
李安全完成签到,获得积分10
15秒前
薛冰雪发布了新的文献求助10
16秒前
16秒前
研友_想想完成签到,获得积分10
17秒前
蓝泡泡完成签到 ,获得积分10
17秒前
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134120
求助须知:如何正确求助?哪些是违规求助? 2784938
关于积分的说明 7769524
捐赠科研通 2440503
什么是DOI,文献DOI怎么找? 1297428
科研通“疑难数据库(出版商)”最低求助积分说明 624961
版权声明 600792