New patterned silicon wafer shape metrology system

薄脆饼 覆盖 计量学 平版印刷术 干涉测量 材料科学 扫描仪 光学 计算机科学 光电子学 物理 程序设计语言
作者
Kiril Ivanov Kurtev,Juan M. Trujillo-Sevilla,Guillermo Castro Luis,Miguel Jiméneza,Rubén Abrantea,José Manuel Ramos Rodríguez,Jan O. Gaudestad
标识
DOI:10.1117/12.2678349
摘要

On-product overlay (OPO), with its continually shrinking overlay budget, remains a constraint in the continued effort at increasing device yield. Overlay metrology capability currently lags the need for improved overlay control, especially for multi-patterning applications. The free form shape of the silicon wafer is critical for process monitoring and is usually controlled through bow and warp measurements during the process flow. As the OPO budget shrinks, non-lithography process induced stress causing in plane distortions (IPD) becomes a more dominant contributor to the shrinking overlay budget. To estimate the wafer process induced IPD parameters after cucking the wafer inside the lithographic scanner, a high-resolution measurement of the freeform wafer shape of the unclamped wafer is needed. The free form wafer shape can then be used in a feed-forward prediction algorithm to predict both intra field and intra die distortions, as has been published by ASML, to minimize the need for alignment marks on the die and wafer and allows for overlay to be performed at any lithography layer. Up until now, the semiconductor industry has been using Coherent Gradient Sensing (CGS) interferometry or Fizeau interferometry to generate the wave front phase from the reflecting wafer surface. The wave front phase is then used to calculate the slope which again generates a shape map of the silicon wafer. However, these techniques have only been available for 300mm wafers. In this paper we introduce Wave Front Phase Imaging (WFPI), a new technique that can measure the free form wafer shape of a patterned silicon wafer using only the intensity of the reflected light. In the WFPI system, the wafer is held vertically to avoid the effects of gravity during measurements. The wave front phase is then measured by acquiring only the 2- dimensional intensity distribution of the reflected non-coherent light at two or more distances along the optical path using a standard, low noise, CMOS sensor. This method allows for very high data acquisition speed, equal to the camera’s shutter time, and a high number of data points with the same number of pixels as available in the digital imaging sensor. In the measurements presented in this paper, we acquired 7.3 million data points on a full 200mm patterned silicon wafer with a lateral resolution of 65μm. The same system presented can also acquire data on a 300mm silicon wafer in which case 16.3 million data points with the same 65μm spatial resolution were collected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
h31318927发布了新的文献求助10
1秒前
孙丫丫丫丫丫完成签到,获得积分20
1秒前
2秒前
2秒前
优雅的小白完成签到,获得积分10
3秒前
wanci应助gangstashit采纳,获得10
4秒前
Ava应助minggalaxy007采纳,获得10
4秒前
小张发布了新的文献求助10
4秒前
taozi完成签到,获得积分0
5秒前
5秒前
bai发布了新的文献求助100
5秒前
6秒前
6秒前
6秒前
shine发布了新的文献求助10
6秒前
kk发布了新的文献求助10
7秒前
itsdatou完成签到,获得积分10
8秒前
8秒前
小马甲应助Maryam采纳,获得10
8秒前
9秒前
9秒前
9秒前
云淡风轻发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
democienceek发布了新的文献求助10
10秒前
11秒前
文静千凡发布了新的文献求助10
11秒前
Joy发布了新的文献求助10
12秒前
粒粒发布了新的文献求助150
12秒前
1111发布了新的文献求助10
13秒前
粒粒发布了新的文献求助10
14秒前
粒粒发布了新的文献求助10
14秒前
粒粒发布了新的文献求助10
14秒前
粒粒发布了新的文献求助10
14秒前
粒粒发布了新的文献求助30
14秒前
粒粒发布了新的文献求助10
14秒前
粒粒发布了新的文献求助10
14秒前
粒粒发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4558607
求助须知:如何正确求助?哪些是违规求助? 3985544
关于积分的说明 12339263
捐赠科研通 3656005
什么是DOI,文献DOI怎么找? 2014096
邀请新用户注册赠送积分活动 1048954
科研通“疑难数据库(出版商)”最低求助积分说明 937316