阴极
材料科学
电极
磷酸铁锂
比能量
复合材料
化学工程
挤压
锂(药物)
电化学
化学
物理
工程类
内分泌学
物理化学
医学
量子力学
作者
Eike Wiegmann,Steffen Fischer,Matthias Leeb,Arno Kwade
出处
期刊:Batteries
[MDPI AG]
日期:2023-11-24
卷期号:9 (12): 567-567
标识
DOI:10.3390/batteries9120567
摘要
A novel water-based lithium ferro-phosphate (LFP) cathode manufacturing process characterized by a significant reduction in the amount of solvent has been developed (semi-dry). To establish and validate this new process, Polytetrafluorethylene (PTFE) is used as a binder, with a binder content of 1 wt.%, minimizing the amount of inactive material within the electrode. Extrusion screws with multiple kneading zones stress the PTFE more intensively and thus produce more and smaller fibrils. The resulting extent of fibrillation is quantified by melting enthalpy as well as mechanical electrode properties. The degree of fibrillation of the binder in an electrode is known to influence the conductive electric and ionic pathways, which in turn affect the discharge capacity. It is shown that this process provides a flexible cathode layer that achieves a specific capacitance of 155 mAh g−1 in initial cycling tests at 0.1 C. Compared to a conventionally processed LFP cathode, the discharge capacity and overall energy output are significantly increased, and the overall energy consumption decreases for the semi-dry processed LFP cathodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI