去唾液酸糖蛋白受体
化学
细胞毒性
糖复合物
内化
阿霉素
半乳糖
结合
肝细胞癌
生物化学
癌症研究
体外
细胞
肝细胞
化疗
生物
数学分析
遗传学
数学
作者
Wenchong Ye,Qun Tang,Tiantian Zhou,Cui Zhou,Chuangchuang Fan,Xiaoyang Wang,Chunmei Wang,Keyu Zhang,Guochao Liao,Wen Zhou
标识
DOI:10.1016/j.ejmech.2023.115988
摘要
Galactose as a recognizing motif for asialoglycoprotein receptor (ASGPR) is a widely accepted vector to deliver cytotoxic agents in the therapy of hepatocellular carcinoma (HCC), however, the individual hydroxyl group of galactose (Gal) contributed to recognizing ASGPR is obscure and remains largely unanswered in the design of glycoconjugates. Herein, we designed and synthesized five positional isomers of Gal-anthocyanin Cy5.0 conjugates and three Gal-doxorubicin (Dox) isomers, respectively. The fluorescence intensity of Gal-Cy5.0 conjugates accumulated in cancer cells hinted the optimal modification sites of positions C2 and C6. Comparing to the cytotoxicity of other conjugates, C2-Gal-Dox (11) was the most potent. Moreover, Gal-Dox conjugates significantly the toxicity of Dox. A progressively lower internalization capacity and siRNA technology implied the cellular uptake and cytotoxicity directly related to the ASGPR expression level. Accordingly, position C2 of galactose may be the best substitution site via ASGPR mediation in the design of anti-HCC glycoconjugates.
科研通智能强力驱动
Strongly Powered by AbleSci AI