Label-efficient learning in agriculture: A comprehensive review

人工智能 机器学习 计算机科学 农业 质量(理念) 深度学习 精准农业 过程(计算) 数据科学 生态学 生物 认识论 操作系统 哲学
作者
Jiajia Li,Dong Chen,Xinda Qi,Zhaojian Li,Yanbo Huang,Daniel Morris,Xiaobo Tan
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:215: 108412-108412 被引量:12
标识
DOI:10.1016/j.compag.2023.108412
摘要

The past decade has witnessed many great successes of machine learning (ML) and deep learning (DL) applications in agricultural systems, including weed control, plant disease diagnosis, agricultural robotics, and precision livestock management. However, a notable limitation of these ML/DL models lies in their reliance on large-scale labeled datasets for training, with their performance closely tied to the quantity and quality of available labeled data. The process of collecting, processing, and labeling such datasets is both expensive and time-consuming, primarily due to escalating labor costs. This challenge has sparked substantial interest among researchers and practitioners in the development of label-efficient ML/DL methods tailored for agricultural applications. In fact, there are more than 50 papers on developing and applying deep-learning-based label-efficient techniques to address various agricultural problems since 2016, which motivates the authors to provide a timely and comprehensive review of recent label-efficient ML/DL methods in agricultural applications. To this end, a principled taxonomy is first developed to organize these methods according to the degree of supervision, including weak supervision (i.e., active learning and semi-/weakly- supervised learning), and no supervision (i.e., un-/self- supervised learning), supplemented by representative state-of-the-art label-efficient ML/DL methods. In addition, a systematic review of various agricultural applications exploiting these label-efficient algorithms, such as precision agriculture, plant phenotyping, and postharvest quality assessment, is presented. Finally, the current problems and challenges are discussed, as well as future research directions. A well-classified paper list that will be actively updated can be accessed at https://github.com/DongChen06/Label-efficient-in-Agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘎嘎嘎嘎发布了新的文献求助10
刚刚
诗筠完成签到 ,获得积分10
1秒前
李爱国应助俭朴的红牛采纳,获得10
2秒前
账户已注销应助mmlb采纳,获得200
3秒前
香蕉觅云应助xbchen采纳,获得10
4秒前
有一颗卤蛋完成签到,获得积分10
4秒前
星河圈揽发布了新的文献求助10
5秒前
安静的小白菜完成签到,获得积分10
5秒前
6秒前
6秒前
朴素的月光完成签到,获得积分10
8秒前
Akim应助明亮的幻竹采纳,获得30
8秒前
慕青应助xbchen采纳,获得10
8秒前
8秒前
9秒前
9秒前
10秒前
you翅膀的鱼完成签到,获得积分10
10秒前
10秒前
完美世界应助11采纳,获得10
10秒前
领导范儿应助科研狗采纳,获得10
11秒前
12秒前
施xy发布了新的文献求助10
12秒前
Rewi_Zhang完成签到,获得积分10
13秒前
Crazy_Runner发布了新的文献求助10
13秒前
hyl发布了新的文献求助30
13秒前
qqq完成签到,获得积分10
13秒前
曦之南。发布了新的文献求助10
14秒前
16秒前
17秒前
17秒前
18秒前
mm发布了新的文献求助10
19秒前
zz完成签到,获得积分10
19秒前
Lucas应助Miracle采纳,获得10
19秒前
重要鑫磊完成签到,获得积分10
19秒前
20秒前
刘总完成签到,获得积分10
20秒前
感性的馒头完成签到 ,获得积分20
20秒前
菠萝蜜完成签到,获得积分10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152304
求助须知:如何正确求助?哪些是违规求助? 2803548
关于积分的说明 7854456
捐赠科研通 2461123
什么是DOI,文献DOI怎么找? 1310174
科研通“疑难数据库(出版商)”最低求助积分说明 629138
版权声明 601765