Hybrid deep multi-task learning radiomics approach for predicting EGFR mutation status of non-small cell lung cancer in CT images

队列 接收机工作特性 无线电技术 人工智能 肺癌 特征(语言学) 深度学习 医学 肿瘤科 计算机科学 放射科 内科学 语言学 哲学
作者
Jing Gong,Fangqiu Fu,Xiaowen Ma,Ting Wang,Xiangyi Ma,Chao You,Yang Zhang,Weijun Peng,Haiquan Chen,Yajia Gu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (24): 245021-245021 被引量:2
标识
DOI:10.1088/1361-6560/ad0d43
摘要

Abstract Objective. Epidermal growth factor receptor (EGFR) mutation genotyping plays a pivotal role in targeted therapy for non-small cell lung cancer (NSCLC). We aimed to develop a computed tomography (CT) image-based hybrid deep radiomics model to predict EGFR mutation status in NSCLC and investigate the correlations between deep image and quantitative radiomics features. Approach. First, we retrospectively enrolled 818 patients from our centre and 131 patients from The Cancer Imaging Archive database to establish a training cohort ( N = 654), an independent internal validation cohort ( N = 164) and an external validation cohort ( N = 131). Second, to predict EGFR mutation status, we developed three CT image-based models, namely, a multi-task deep neural network (DNN), a radiomics model and a feature fusion model. Third, we proposed a hybrid loss function to train the DNN model. Finally, to evaluate the model performance, we computed the areas under the receiver operating characteristic curves (AUCs) and decision curve analysis curves of the models. Main results. For the two validation cohorts, the feature fusion model achieved AUC values of 0.86 ± 0.03 and 0.80 ± 0.05, which were significantly higher than those of the single-task DNN and radiomics models (all P < 0.05). There was no significant difference between the feature fusion and the multi-task DNN models ( P > 0.8). The binary prediction scores showed excellent prognostic value in predicting disease-free survival ( P = 0.02) and overall survival ( P < 0.005) for validation cohort 2. Significance. The results demonstrate that (1) the feature fusion and multi-task DNN models achieve significantly higher performance than that of the conventional radiomics and single-task DNN models, (2) the feature fusion model can decode the imaging phenotypes representing NSCLC heterogeneity related to both EGFR mutation and patient NSCLC prognosis, and (3) high correlations exist between some deep image and radiomics features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
娇娇发布了新的文献求助10
1秒前
SYLH应助fanyi采纳,获得30
1秒前
ssss发布了新的文献求助10
1秒前
Chen发布了新的文献求助10
2秒前
大个应助chenqinqin采纳,获得10
2秒前
华仔应助zbl1314zbl采纳,获得10
2秒前
2秒前
丘比特应助失眠的耳机采纳,获得10
2秒前
3秒前
支平灵完成签到,获得积分10
3秒前
3秒前
4秒前
做实验太菜完成签到,获得积分10
4秒前
天天快乐应助weiweiwei采纳,获得30
4秒前
翻羽发布了新的文献求助10
4秒前
漂亮竺发布了新的文献求助10
5秒前
iNk应助危机的安容采纳,获得20
5秒前
张羽翀发布了新的文献求助10
6秒前
无限雨南发布了新的文献求助20
6秒前
mice33发布了新的文献求助10
6秒前
6秒前
北一发布了新的文献求助10
6秒前
充电宝应助lfzw采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
kagami发布了新的文献求助10
8秒前
8秒前
dongjy应助晚上来我家吃饭采纳,获得50
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978729
求助须知:如何正确求助?哪些是违规求助? 3522741
关于积分的说明 11214658
捐赠科研通 3260224
什么是DOI,文献DOI怎么找? 1799815
邀请新用户注册赠送积分活动 878676
科研通“疑难数据库(出版商)”最低求助积分说明 807052