软骨发生
骨关节炎
再生(生物学)
软骨
微泡
医学
软骨细胞
变性(医学)
间充质干细胞
炎症
癌症研究
细胞生物学
化学
病理
免疫学
解剖
生物
小RNA
生物化学
替代医学
基因
作者
Hui Zhang,Jianghong Huang,Murad Alahdal
标识
DOI:10.1016/j.biopha.2023.115715
摘要
Osteoarthritis (OA) is a challenging joint inflammatory disease that often leads to disability. Immunoregulatory Exosomes (Exos) have shown promise in OA and cartilage degeneration treatment. Engineering Exos to deliver therapeutic agents like Kartogenin (KGN) has displayed potential for restoring cartilage regeneration. However, challenges include the uneven distribution of Exos at the injury site and the release of Exos cargo out of chondrocytes. Hydrogel-loaded uMSC-Exo has demonstrated significant therapeutic effects in wound healing and tissue regeneration. Recently, a new version of three-dimensional (3D) bioprinting of hydrogel significantly restored cartilage regeneration in OA joints. Combining immune regulatory Exos with 3D bioprinting hydrogel (3D-BPH-Exos) holds the potential for immunomodulating cartilage tissue and treatment of OA. It can reduce intracellular inflammasome formation and the release of inflammatory agents like IL-1β, TNF-α, and INF-γ, while also preventing chondrocyte apoptosis by restoring mitochondrial functions and enhancing chondrogenesis in synovial MSCs, osteoprogenitor cells, and osteoclasts. Loading Exos with chondrogenic stimuli agents in the 3D-BPH-Exos approach may offer a faster and safer strategy for cartilage repair while better inhibiting joint inflammation than high doses of anti-inflammatory drugs and cell-based therapies. This review provides a comprehensive overview of hydrogel bioprinting and exosome-based therapy in OA. It emphasizes the potential of 3D-BPH-Exos loaded with chondrogenic stimuli agents for OA treatment, serving as a basis for further research.
科研通智能强力驱动
Strongly Powered by AbleSci AI