亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

[Origin identification of Poria cocos based on hyperspectral imaging technology].

高光谱成像 混淆矩阵 线性判别分析 模式识别(心理学) 数学 人工智能 支持向量机 计算机科学
作者
Xue Sun,Deng-Ting Zhang,Hui Wang,Cong Zhou,Jian Yang,Daiyin Peng,Shouxin Zhang
出处
期刊:PubMed 卷期号:48 (16): 4337-4346 被引量:1
标识
DOI:10.19540/j.cnki.cjcmm.20230512.102
摘要

To realize the non-destructive and rapid origin discrimination of Poria cocos in batches, this study established the P. cocos origin recognition model based on hyperspectral imaging combined with machine learning. P. cocos samples from Anhui, Fujian, Guangxi, Hubei, Hunan, Henan and Yunnan were used as the research objects. Hyperspectral data were collected in the visible and near infrared band(V-band, 410-990 nm) and shortwave infrared band(S-band, 950-2 500 nm). The original spectral data were divided into S-band, V-band and full-band. With the original data(RD) of different bands, multiplicative scatter correction(MSC), standard normal variation(SNV), S-G smoothing(SGS), first derivative(FD), second derivative(SD) and other pretreatments were carried out. Then the data were classified according to three different types of producing areas: province, county and batch. The origin identification model was established by partial least squares discriminant analysis(PLS-DA) and linear support vector machine(LinearSVC). Finally, confusion matrix was employed to evaluate the optimal model, with F1 score as the evaluation standard. The results revealed that the origin identification model established by FD combined with LinearSVC had the highest prediction accuracy in full-band range classified by province, V-band range by county and full-band range by batch, which were 99.28%, 98.55% and 97.45%, respectively, and the overall F1 scores of these three models were 99.16%, 98.59% and 97.58%, respectively, indicating excellent performance of these models. Therefore, hyperspectral imaging combined with LinearSVC can realize the non-destructive, accurate and rapid identification of P. cocos from different producing areas in batches, which is conducive to the directional research and production of P. cocos.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QI发布了新的文献求助10
刚刚
4秒前
13秒前
酷波er应助田柾国采纳,获得10
14秒前
酷波er应助张子捷采纳,获得10
16秒前
16秒前
哎呦发布了新的文献求助10
18秒前
狂野傲南发布了新的文献求助10
20秒前
21秒前
田柾国发布了新的文献求助10
26秒前
大个应助狂野傲南采纳,获得10
30秒前
jiangchuansm完成签到,获得积分10
41秒前
43秒前
舒心盼旋发布了新的文献求助10
49秒前
CipherSage应助科研通管家采纳,获得10
58秒前
852应助科研通管家采纳,获得10
58秒前
59秒前
丁宇卓完成签到 ,获得积分10
59秒前
Jarvis发布了新的文献求助10
1分钟前
1分钟前
叁壶薏苡发布了新的文献求助10
1分钟前
joe完成签到 ,获得积分0
1分钟前
Jarvis完成签到,获得积分10
1分钟前
自由的梦露完成签到 ,获得积分10
1分钟前
彭于晏应助田柾国采纳,获得10
1分钟前
1分钟前
wuta完成签到,获得积分20
1分钟前
zhangqin发布了新的文献求助10
1分钟前
帅气的鹏飞完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
蔡翌文完成签到 ,获得积分10
1分钟前
田柾国发布了新的文献求助10
1分钟前
wuta发布了新的文献求助10
2分钟前
十四吉完成签到 ,获得积分20
2分钟前
科研通AI2S应助VDC采纳,获得10
2分钟前
自然的含烟完成签到,获得积分10
2分钟前
2分钟前
Swear完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162300
求助须知:如何正确求助?哪些是违规求助? 2813299
关于积分的说明 7899622
捐赠科研通 2472677
什么是DOI,文献DOI怎么找? 1316491
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142