Ab initio calculations of electronic, magnetic, optical, and photocatalytic properties of strained 1T–ZrSe2

材料科学 密度泛函理论 磁化 极限抗拉强度 从头算 拉伤 自旋电子学 拉曼光谱 带隙 凝聚态物理 复合材料 计算化学 光电子学 铁磁性 光学 有机化学 磁场 化学 物理 医学 量子力学 内科学
作者
Sheikh Mohd. Ta-Seen Afrid,Zubair Ahmed
出处
期刊:Materials today communications [Elsevier]
卷期号:37: 107271-107271
标识
DOI:10.1016/j.mtcomm.2023.107271
摘要

Because transition metal dichalcogenides (TMDs) can withstand high strain, strain engineering has shown to be an attractive strategy for modulating TMD characteristics and improving device performance. Density functional theory (DFT) was used to perform first-principles calculations on the electronic, magnetic, optical, and photocatalytic properties of a 1T–ZrSe2 monolayer under biaxial compressive and tensile strain. The first-principles computations revealed that all stressed structures experienced a semiconducting to metallic phase transition. Compressive strain resulted in no magnetization, whereas increasing tensile strain resulted in a significant increase in magnetization on 1T–ZrSe2. When 6% tensile strain was applied, the total magnetization changed 3.33 times, from 0.069 μB/cell to 0.184 μB/cell. Dynamic stability was maintained as the compressive strain was increased. However, dynamic stability held up to 10% of applied tensile strain. The vibration peak in Raman spectra shifted to a higher wavenumber which signifies the frequency reduction behavior with increasing tensile strain applied on 1T–ZrSe2. For different high–symmetry adsorption sites of I2 and I–Br on -10% strained 1T–ZrSe2, a noticeable band gap occurred and metallic to semiconducting phase transition was obtained. The bridge site of I2 exhibited significant adsorption energy among all the adsorption sites. This investigation satisfied the oxygen evaluation reaction (OER) condition for all adsorption sites of I2 and I–Br. The findings of this study will come up with novel schemes for 2D–TMD functional materials in numerous applications and propel the research interest in making spintronic and photocatalytic devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晚睡是小狗完成签到,获得积分10
刚刚
3秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
CipherSage应助汤哈哈哈哈采纳,获得10
5秒前
竹筏过海应助tuanheqi采纳,获得100
8秒前
跳跃的豆芽完成签到,获得积分20
9秒前
9秒前
口味虾完成签到,获得积分10
10秒前
Hello应助luxer采纳,获得10
10秒前
DrN完成签到,获得积分10
10秒前
hongyeZhang完成签到 ,获得积分10
10秒前
lll发布了新的文献求助10
11秒前
科研通AI6应助001采纳,获得10
12秒前
12秒前
NexusExplorer应助孤独的鸡翅采纳,获得10
12秒前
怪诞完成签到,获得积分10
13秒前
楼马完成签到 ,获得积分10
13秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
大胆的飞荷应助乐观秋荷采纳,获得20
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
脑洞疼应助ywh11采纳,获得10
18秒前
18秒前
18秒前
20秒前
哈哈完成签到 ,获得积分10
20秒前
youlili发布了新的文献求助10
20秒前
luxer完成签到,获得积分20
22秒前
22秒前
23秒前
共享精神应助zzn采纳,获得10
23秒前
23秒前
全糖完成签到,获得积分10
23秒前
孤独的鸡翅完成签到,获得积分20
25秒前
爱学习的憨憨鸭完成签到,获得积分10
25秒前
25秒前
chutai发布了新的文献求助10
25秒前
FashionBoy应助的的的维尔采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666222
求助须知:如何正确求助?哪些是违规求助? 4880484
关于积分的说明 15116713
捐赠科研通 4825360
什么是DOI,文献DOI怎么找? 2583255
邀请新用户注册赠送积分活动 1537411
关于科研通互助平台的介绍 1495622