Ab initio calculations of electronic, magnetic, optical, and photocatalytic properties of strained 1T–ZrSe2

材料科学 密度泛函理论 磁化 极限抗拉强度 从头算 拉伤 自旋电子学 拉曼光谱 带隙 凝聚态物理 复合材料 计算化学 光电子学 铁磁性 光学 有机化学 磁场 化学 物理 医学 量子力学 内科学
作者
Sheikh Mohd. Ta-Seen Afrid,Zubair Ahmed
出处
期刊:Materials today communications [Elsevier]
卷期号:37: 107271-107271
标识
DOI:10.1016/j.mtcomm.2023.107271
摘要

Because transition metal dichalcogenides (TMDs) can withstand high strain, strain engineering has shown to be an attractive strategy for modulating TMD characteristics and improving device performance. Density functional theory (DFT) was used to perform first-principles calculations on the electronic, magnetic, optical, and photocatalytic properties of a 1T–ZrSe2 monolayer under biaxial compressive and tensile strain. The first-principles computations revealed that all stressed structures experienced a semiconducting to metallic phase transition. Compressive strain resulted in no magnetization, whereas increasing tensile strain resulted in a significant increase in magnetization on 1T–ZrSe2. When 6% tensile strain was applied, the total magnetization changed 3.33 times, from 0.069 μB/cell to 0.184 μB/cell. Dynamic stability was maintained as the compressive strain was increased. However, dynamic stability held up to 10% of applied tensile strain. The vibration peak in Raman spectra shifted to a higher wavenumber which signifies the frequency reduction behavior with increasing tensile strain applied on 1T–ZrSe2. For different high–symmetry adsorption sites of I2 and I–Br on -10% strained 1T–ZrSe2, a noticeable band gap occurred and metallic to semiconducting phase transition was obtained. The bridge site of I2 exhibited significant adsorption energy among all the adsorption sites. This investigation satisfied the oxygen evaluation reaction (OER) condition for all adsorption sites of I2 and I–Br. The findings of this study will come up with novel schemes for 2D–TMD functional materials in numerous applications and propel the research interest in making spintronic and photocatalytic devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
单薄冰安发布了新的文献求助10
刚刚
乐乐应助stw采纳,获得10
刚刚
1秒前
乐乐应助jl采纳,获得10
1秒前
地球撞火星完成签到,获得积分10
1秒前
Ava应助寻找论文的研究生a采纳,获得30
1秒前
1秒前
1秒前
2秒前
卫三发布了新的文献求助10
3秒前
HCL完成签到,获得积分10
3秒前
大个应助舒心的雪莲采纳,获得10
3秒前
3秒前
cubicT完成签到,获得积分10
3秒前
3秒前
团团团子发布了新的文献求助10
4秒前
李爱国应助叶95采纳,获得10
5秒前
5秒前
何安发布了新的文献求助10
5秒前
miao发布了新的文献求助10
5秒前
5秒前
6秒前
顾矜应助咯咯哒1采纳,获得10
6秒前
TT发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
荔枝味果冻完成签到,获得积分10
8秒前
Honahlee发布了新的文献求助10
8秒前
Criminology34应助Damon采纳,获得10
9秒前
烟花应助杨一乐采纳,获得10
9秒前
9秒前
Kuhaku发布了新的文献求助20
9秒前
凯云发布了新的文献求助10
9秒前
乐乐应助柔弱亦寒采纳,获得10
9秒前
wushuwen发布了新的文献求助10
10秒前
Orange应助SIQI采纳,获得10
10秒前
JamesPei应助包容秋珊采纳,获得10
10秒前
Akim应助望居于夜空采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608436
求助须知:如何正确求助?哪些是违规求助? 4693073
关于积分的说明 14876620
捐赠科研通 4717595
什么是DOI,文献DOI怎么找? 2544222
邀请新用户注册赠送积分活动 1509305
关于科研通互助平台的介绍 1472836