Development of Electrochemical Anion Doping Technique for Expansion of Functional Material Exploration

材料科学 兴奋剂 电化学 无定形固体 离子 相(物质) 电化学能量转换 氧化物 化学工程 钙钛矿(结构) 电解 纳米技术 亚稳态 无机化学 物理化学 电极 结晶学 有机化学 光电子学 化学 冶金 电解质 工程类
作者
Takuya Katsumata,Hajime Yamamoto,Yuta Kimura,Koji Amezawa,Ryotaro Aso,Soichi Kikkawa,Seiji Yamazoe,Takashi Nakamura
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:33 (50) 被引量:2
标识
DOI:10.1002/adfm.202307116
摘要

Abstract Instead of conventional cation doping strategy, anion doping is a promising new strategy for advances of energy conversion and storage technologies such as batteries, catalysts, electrolysis, and fuel cells. To synthesize mixed‐anion compounds, novel synthesis techniques such as topochemical reaction, high‐pressure reaction, solvothermal reaction have been developed. Despite these excellent synthesis techniques, synthesizable mixed‐anion compounds are still limited. For further expansion of the material exploration of mixed‐anion compounds, herein, an electrochemical anion doping technique is developed, which can flexibly control a species of anion, the doping rate and the degree of anion doping. The concept of the new synthesis technique is verified by F doping to the perovskite oxide La 0.5 Sr 0.5 CoO 3− δ . Quantitative control of F in the perovskite host material is succeeded by using an electrochemical reactor composed of La 0.5 Sr 0.5 CoO 3− δ ‐BaF 2 |BaF 2 |PbF 2 ‐Pb, and phase‐pure F‐doped La 0.5 Sr 0.5 CoO 3− δ powder is obtained. Moreover, nano‐size crystalline domains with amorphous phase are formed on the particle surface under the high‐rate F doping, suggesting that tuning the anion doping rate enables the control of the formation of metastable phase. As demonstrated, the electrochemical anion doping technique opens up new possibilities for advances of energy materials by utilizing function of anionic species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
刘歌完成签到 ,获得积分10
1秒前
阿巡完成签到,获得积分10
1秒前
Chen完成签到,获得积分10
3秒前
LSH970829发布了新的文献求助10
3秒前
哈哈哈完成签到 ,获得积分10
4秒前
汤姆完成签到,获得积分10
4秒前
6秒前
6秒前
翠翠完成签到,获得积分10
7秒前
7秒前
LSH970829完成签到,获得积分10
8秒前
Lyg完成签到,获得积分20
9秒前
坚强的樱发布了新的文献求助10
9秒前
baodingning完成签到,获得积分10
10秒前
10秒前
公茂源发布了新的文献求助30
10秒前
热爱完成签到,获得积分10
11秒前
12秒前
叫滚滚发布了新的文献求助10
13秒前
星瑆心完成签到,获得积分10
13秒前
啦啦啦啦啦完成签到,获得积分10
14秒前
Lyg发布了新的文献求助10
14秒前
Dksido完成签到,获得积分10
15秒前
兰博基尼奥完成签到,获得积分10
15秒前
热情芷荷发布了新的文献求助10
17秒前
random完成签到,获得积分10
18秒前
18秒前
果果瑞宁完成签到,获得积分10
18秒前
19秒前
机智小虾米完成签到,获得积分20
19秒前
goldenfleece完成签到,获得积分10
20秒前
科研通AI2S应助学者采纳,获得10
20秒前
小杨完成签到,获得积分10
21秒前
sutharsons应助科研通管家采纳,获得30
22秒前
22秒前
Ava应助科研通管家采纳,获得10
22秒前
慕青应助科研通管家采纳,获得10
22秒前
所所应助科研通管家采纳,获得10
22秒前
在水一方应助科研通管家采纳,获得10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808