已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A structurally re-parameterized convolution neural network-based method for gearbox fault diagnosis in edge computing scenarios

计算机科学 边缘计算 断层(地质) 卷积神经网络 云计算 推论 GSM演进的增强数据速率 边缘设备 人工神经网络 特征(语言学) 卷积(计算机科学) 人工智能 噪音(视频) 模式识别(心理学) 数据挖掘 实时计算 地质学 地震学 哲学 图像(数学) 操作系统 语言学
作者
Yanzhi Wang,Jinhong Wu,Ziyang Yu,Jiexiang Hu,Qi Zhou
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:126: 107091-107091 被引量:6
标识
DOI:10.1016/j.engappai.2023.107091
摘要

Gearboxes operate in harsh environments. Cloud-based techniques have been previously adopted for fault diagnosis in Gearboxes. Cloud-based fault diagnosis methods are prone to time delays and loss of information. Therefore, edge computing-based fault diagnosis becomes an option. However, with limited hardware resources for edge devices, balancing the diagnostic capabilities of the model with operating performance becomes a challenge. This paper proposes a lightweight convolutional neural network for gearbox fault diagnosis in edge computing scenarios to achieve an accurate diagnosis and lightweight deployment of models. By constructing the Mel-Frequency Cepstral Coefficients (MFCC) feature matrix of input data, the methodology can suppress noise interference and improve diagnostic accuracy. Based on the structural re-parameterization, the model structure transforms from multiple branches at training time to a single branch at inference time. This improves the inference speed of the model and reduces the hardware cost when the model is deployed while ensuring that the diagnostic capability of the model remains unchanged. Validation experiments were conducted on a public dataset and a custom experimental device, using the NVIDIA Jetson Xavier NX kit as the edge computing platform. According to the experiment result, after extracting the MFCC feature matrix, the average diagnostic accuracy rate in the noisy environment of the presented methodology is improved by 12.22% and 9.44%, respectively. After structural re-parameterization, the Memory of the model decreases by 52.58%, and the inference speed is increased by 38.83%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Kishi完成签到,获得积分10
3秒前
4秒前
灵巧大地发布了新的文献求助10
5秒前
鲤鱼初柳完成签到 ,获得积分10
6秒前
星空下的皮先生完成签到,获得积分10
7秒前
9秒前
陈三三发布了新的文献求助10
9秒前
12秒前
13秒前
13秒前
圆仔完成签到,获得积分10
13秒前
13秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
灵巧大地完成签到,获得积分10
16秒前
善学以致用应助i3utter采纳,获得10
17秒前
圆仔发布了新的文献求助10
18秒前
闫123完成签到,获得积分10
18秒前
18秒前
20秒前
今后应助伯爵的猫采纳,获得10
22秒前
Orange应助陈三三采纳,获得10
23秒前
RC_Wang发布了新的文献求助10
24秒前
猪宝发布了新的文献求助10
24秒前
KDS发布了新的文献求助10
25秒前
李爱国应助蓝色逍遥鱼采纳,获得10
26秒前
orixero应助章鱼采纳,获得10
28秒前
沐慕完成签到,获得积分10
29秒前
Hello应助酷炫的真采纳,获得10
33秒前
淡定语柔完成签到 ,获得积分10
33秒前
34秒前
福娃选手完成签到 ,获得积分10
34秒前
丰富的凡儿完成签到,获得积分10
34秒前
36秒前
37秒前
40秒前
40秒前
41秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956848
求助须知:如何正确求助?哪些是违规求助? 3502916
关于积分的说明 11110677
捐赠科研通 3233882
什么是DOI,文献DOI怎么找? 1787655
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802191