A structurally re-parameterized convolution neural network-based method for gearbox fault diagnosis in edge computing scenarios

计算机科学 边缘计算 断层(地质) 卷积神经网络 云计算 推论 GSM演进的增强数据速率 边缘设备 人工神经网络 特征(语言学) 卷积(计算机科学) 人工智能 噪音(视频) 模式识别(心理学) 数据挖掘 实时计算 语言学 哲学 地震学 图像(数学) 地质学 操作系统
作者
Yanzhi Wang,Jinhong Wu,Ziyang Yu,Jiexiang Hu,Qi Zhou
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:126: 107091-107091 被引量:6
标识
DOI:10.1016/j.engappai.2023.107091
摘要

Gearboxes operate in harsh environments. Cloud-based techniques have been previously adopted for fault diagnosis in Gearboxes. Cloud-based fault diagnosis methods are prone to time delays and loss of information. Therefore, edge computing-based fault diagnosis becomes an option. However, with limited hardware resources for edge devices, balancing the diagnostic capabilities of the model with operating performance becomes a challenge. This paper proposes a lightweight convolutional neural network for gearbox fault diagnosis in edge computing scenarios to achieve an accurate diagnosis and lightweight deployment of models. By constructing the Mel-Frequency Cepstral Coefficients (MFCC) feature matrix of input data, the methodology can suppress noise interference and improve diagnostic accuracy. Based on the structural re-parameterization, the model structure transforms from multiple branches at training time to a single branch at inference time. This improves the inference speed of the model and reduces the hardware cost when the model is deployed while ensuring that the diagnostic capability of the model remains unchanged. Validation experiments were conducted on a public dataset and a custom experimental device, using the NVIDIA Jetson Xavier NX kit as the edge computing platform. According to the experiment result, after extracting the MFCC feature matrix, the average diagnostic accuracy rate in the noisy environment of the presented methodology is improved by 12.22% and 9.44%, respectively. After structural re-parameterization, the Memory of the model decreases by 52.58%, and the inference speed is increased by 38.83%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助杨枝甘露樱桃采纳,获得10
1秒前
搜集达人应助zhuzhu采纳,获得20
1秒前
LiShin发布了新的文献求助10
2秒前
末岛发布了新的文献求助10
2秒前
2秒前
coffee完成签到,获得积分10
3秒前
李来仪发布了新的文献求助10
3秒前
长安完成签到,获得积分10
4秒前
Hao完成签到,获得积分10
4秒前
JamesPei应助王小志采纳,获得10
4秒前
詹密完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
酷波er应助NEMO采纳,获得10
7秒前
7秒前
7秒前
7秒前
情怀应助shirleeyeahe采纳,获得10
7秒前
8秒前
元元应助xzy采纳,获得20
8秒前
泥花完成签到,获得积分10
8秒前
247793325完成签到,获得积分20
8秒前
眼睛大的冰岚完成签到,获得积分10
8秒前
YY完成签到 ,获得积分10
8秒前
9秒前
雨天慢行完成签到,获得积分10
9秒前
韦威风发布了新的文献求助10
9秒前
科目三应助深情的不评采纳,获得10
9秒前
飞快的梦易完成签到,获得积分10
10秒前
Akim应助1b采纳,获得10
10秒前
末岛完成签到,获得积分10
10秒前
sweetbearm应助benben采纳,获得10
10秒前
10秒前
11秒前
科研通AI5应助今今采纳,获得10
11秒前
通~发布了新的文献求助10
11秒前
YY完成签到,获得积分10
11秒前
首席医官完成签到,获得积分10
12秒前
坚定迎天完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794