A structurally re-parameterized convolution neural network-based method for gearbox fault diagnosis in edge computing scenarios

计算机科学 边缘计算 断层(地质) 卷积神经网络 云计算 推论 GSM演进的增强数据速率 边缘设备 人工神经网络 特征(语言学) 卷积(计算机科学) 人工智能 噪音(视频) 模式识别(心理学) 数据挖掘 实时计算 语言学 哲学 地震学 图像(数学) 地质学 操作系统
作者
Yanzhi Wang,Jinhong Wu,Ziyang Yu,Jiexiang Hu,Qi Zhou
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:126: 107091-107091 被引量:6
标识
DOI:10.1016/j.engappai.2023.107091
摘要

Gearboxes operate in harsh environments. Cloud-based techniques have been previously adopted for fault diagnosis in Gearboxes. Cloud-based fault diagnosis methods are prone to time delays and loss of information. Therefore, edge computing-based fault diagnosis becomes an option. However, with limited hardware resources for edge devices, balancing the diagnostic capabilities of the model with operating performance becomes a challenge. This paper proposes a lightweight convolutional neural network for gearbox fault diagnosis in edge computing scenarios to achieve an accurate diagnosis and lightweight deployment of models. By constructing the Mel-Frequency Cepstral Coefficients (MFCC) feature matrix of input data, the methodology can suppress noise interference and improve diagnostic accuracy. Based on the structural re-parameterization, the model structure transforms from multiple branches at training time to a single branch at inference time. This improves the inference speed of the model and reduces the hardware cost when the model is deployed while ensuring that the diagnostic capability of the model remains unchanged. Validation experiments were conducted on a public dataset and a custom experimental device, using the NVIDIA Jetson Xavier NX kit as the edge computing platform. According to the experiment result, after extracting the MFCC feature matrix, the average diagnostic accuracy rate in the noisy environment of the presented methodology is improved by 12.22% and 9.44%, respectively. After structural re-parameterization, the Memory of the model decreases by 52.58%, and the inference speed is increased by 38.83%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大意的罡完成签到,获得积分10
1秒前
我是老大应助lll采纳,获得50
1秒前
安琦发布了新的文献求助10
2秒前
格子完成签到,获得积分10
3秒前
3秒前
Sun1c7发布了新的文献求助10
4秒前
linfordlu完成签到,获得积分10
5秒前
安澜应助。z采纳,获得10
5秒前
llj完成签到,获得积分20
5秒前
佐为完成签到 ,获得积分10
6秒前
xzy完成签到 ,获得积分10
7秒前
归墟发布了新的文献求助10
8秒前
llj发布了新的文献求助10
9秒前
河马完成签到,获得积分10
9秒前
2123121321321完成签到,获得积分10
11秒前
开心向真完成签到,获得积分10
11秒前
大模型应助Sun1c7采纳,获得10
11秒前
852应助十一采纳,获得10
11秒前
淡淡明辉完成签到,获得积分10
13秒前
hu完成签到,获得积分10
13秒前
。z完成签到,获得积分20
14秒前
Xu_W卜完成签到,获得积分10
14秒前
iceeer完成签到,获得积分10
16秒前
16秒前
17秒前
郑郑郑幸运完成签到 ,获得积分10
17秒前
For_winter完成签到,获得积分10
17秒前
ZZ完成签到,获得积分10
18秒前
Acuity完成签到,获得积分10
18秒前
Lavendar完成签到 ,获得积分10
18秒前
Chamsel完成签到,获得积分10
18秒前
MS903完成签到 ,获得积分10
19秒前
19秒前
19秒前
开心完成签到 ,获得积分10
20秒前
pforjivcn完成签到,获得积分10
20秒前
安琦发布了新的文献求助10
20秒前
20秒前
Acuity发布了新的文献求助10
21秒前
欧大大完成签到,获得积分10
21秒前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
拟南芥模式识别受体参与调控抗病蛋白介导的ETI免疫反应的机制研究 550
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068382
求助须知:如何正确求助?哪些是违规求助? 2722240
关于积分的说明 7476489
捐赠科研通 2369329
什么是DOI,文献DOI怎么找? 1256334
科研通“疑难数据库(出版商)”最低求助积分说明 609550
版权声明 596835