已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Shape and Size Free-CNN for Urban Functional Zone Mapping With High-Resolution Satellite Images and POI Data

计算机科学 卷积神经网络 人工智能 深度学习 模式识别(心理学) 比例(比率) 卷积(计算机科学) 遥感 图像分辨率 残余物 上下文图像分类 图像(数学) 人工神经网络 数据挖掘 地图学 地理 算法
作者
Zhou Guo,Jiangtian Wen,Rui Xu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:2
标识
DOI:10.1109/tgrs.2023.3320658
摘要

Urban functional zone (UFZ) refers to the spatial aggregation of similar human activities in urban areas, and its category information has significant implications for city planning and layout. Existing studies have incorporated high-resolution remote sensing (HSR) images with social sensing data to obtain UFZ patches for classification and identification purposes. While deep learning techniques have proven effective in remote sensing image classification, two challenges arise when applying them to UFZ classification: irregular shapes and inconsistent sizes, making it difficult to input UFZ patches into deep learning models directly. To address these challenges, this study proposes an end-to-end model, known as the shape and size free convolutional neural network (SSF-CNN), to automatically classify UFZ patches of varying sizes and irregular shapes. First, the SSF-CNN adopted a novel network, named hierarchical attentional residual network (Res-HANet), which embeds a hierarchical group convolution (HGC) module and attention mechanisms to learn multi-scale features from fused image blocks of four different sizes. Then, a mask layer is followed to filter the deep features and preserve the original information of irregular UFZs. The proposed method was applied to classifying UFZs in Zhuhai and Guangzhou cities, Guangdong Province, China. Evaluation results showed that SSF-CNN achieved an overall accuracy of 87.85% for the Zhuhai dataset and 90.49% for the Guangzhou dataset, significantly better than existing methods. In addition, ablation experiments confirm the effectiveness of components in the SSF-CNN. Overall, the results suggest that the proposed method has great potential for large-scale UFZ mapping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如约而至完成签到 ,获得积分10
刚刚
zqqq完成签到 ,获得积分10
刚刚
哈哈哈哈哈关注了科研通微信公众号
刚刚
leeSongha完成签到 ,获得积分10
1秒前
PL发布了新的文献求助10
3秒前
香蕉觅云应助时势造英雄采纳,获得10
4秒前
orixero应助zzj-zjut采纳,获得10
4秒前
Veronica完成签到,获得积分10
5秒前
2hi完成签到,获得积分10
5秒前
整齐雁易发布了新的文献求助10
7秒前
12秒前
jimoon发布了新的文献求助20
13秒前
16秒前
chujun_cai完成签到 ,获得积分10
16秒前
七慕凉应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
传奇3应助科研通管家采纳,获得10
16秒前
大个应助科研通管家采纳,获得10
16秒前
yx_cheng应助科研通管家采纳,获得30
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
yx_cheng应助科研通管家采纳,获得30
17秒前
七慕凉应助科研通管家采纳,获得10
17秒前
yx_cheng应助科研通管家采纳,获得30
17秒前
17秒前
numagok完成签到,获得积分10
18秒前
alvin完成签到,获得积分10
22秒前
任性铅笔完成签到 ,获得积分10
27秒前
27秒前
NS完成签到,获得积分0
28秒前
烟火还是永恒完成签到,获得积分10
31秒前
32秒前
33秒前
混沌完成签到 ,获得积分20
35秒前
38秒前
哈哈哈哈完成签到 ,获得积分10
38秒前
Nn完成签到 ,获得积分10
39秒前
二牛完成签到,获得积分10
39秒前
39秒前
大个应助PL采纳,获得10
41秒前
辣椒发布了新的文献求助10
44秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994745
求助须知:如何正确求助?哪些是违规求助? 3534958
关于积分的说明 11266887
捐赠科研通 3274773
什么是DOI,文献DOI怎么找? 1806467
邀请新用户注册赠送积分活动 883316
科研通“疑难数据库(出版商)”最低求助积分说明 809762