亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Shape and Size Free-CNN for Urban Functional Zone Mapping With High-Resolution Satellite Images and POI Data

计算机科学 卷积神经网络 人工智能 深度学习 模式识别(心理学) 比例(比率) 卷积(计算机科学) 遥感 图像分辨率 残余物 上下文图像分类 图像(数学) 人工神经网络 数据挖掘 地图学 地理 算法
作者
Zhou Guo,Jiangtian Wen,Rui Xu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:2
标识
DOI:10.1109/tgrs.2023.3320658
摘要

Urban functional zone (UFZ) refers to the spatial aggregation of similar human activities in urban areas, and its category information has significant implications for city planning and layout. Existing studies have incorporated high-resolution remote sensing (HSR) images with social sensing data to obtain UFZ patches for classification and identification purposes. While deep learning techniques have proven effective in remote sensing image classification, two challenges arise when applying them to UFZ classification: irregular shapes and inconsistent sizes, making it difficult to input UFZ patches into deep learning models directly. To address these challenges, this study proposes an end-to-end model, known as the shape and size free convolutional neural network (SSF-CNN), to automatically classify UFZ patches of varying sizes and irregular shapes. First, the SSF-CNN adopted a novel network, named hierarchical attentional residual network (Res-HANet), which embeds a hierarchical group convolution (HGC) module and attention mechanisms to learn multi-scale features from fused image blocks of four different sizes. Then, a mask layer is followed to filter the deep features and preserve the original information of irregular UFZs. The proposed method was applied to classifying UFZs in Zhuhai and Guangzhou cities, Guangdong Province, China. Evaluation results showed that SSF-CNN achieved an overall accuracy of 87.85% for the Zhuhai dataset and 90.49% for the Guangzhou dataset, significantly better than existing methods. In addition, ablation experiments confirm the effectiveness of components in the SSF-CNN. Overall, the results suggest that the proposed method has great potential for large-scale UFZ mapping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宣若剑发布了新的文献求助10
7秒前
Murphy完成签到,获得积分10
21秒前
浮游应助科研通管家采纳,获得10
35秒前
mm应助科研通管家采纳,获得10
35秒前
浮游应助科研通管家采纳,获得10
35秒前
浮游应助科研通管家采纳,获得10
35秒前
浮游应助科研通管家采纳,获得10
35秒前
浮游应助科研通管家采纳,获得10
35秒前
浮游应助科研通管家采纳,获得10
35秒前
浮游应助科研通管家采纳,获得10
35秒前
田様应助科研启动采纳,获得30
42秒前
52秒前
你嵙这个期刊没买完成签到,获得积分10
54秒前
li发布了新的文献求助20
59秒前
li完成签到,获得积分20
1分钟前
1分钟前
嘻嘻哈哈完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
apple发布了新的文献求助10
2分钟前
2分钟前
Conner完成签到 ,获得积分10
2分钟前
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
xxx发布了新的文献求助10
2分钟前
嵐酱布响堪论文完成签到,获得积分10
2分钟前
Jessica完成签到,获得积分10
2分钟前
3分钟前
4分钟前
aa111发布了新的文献求助10
4分钟前
完美世界应助aa111采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463313
求助须知:如何正确求助?哪些是违规求助? 4568049
关于积分的说明 14312357
捐赠科研通 4493975
什么是DOI,文献DOI怎么找? 2462050
邀请新用户注册赠送积分活动 1450987
关于科研通互助平台的介绍 1426221