SAUNet: Spatial-Attention Unfolding Network for Image Compressive Sensing

计算机科学 人工智能 像素 块(置换群论) 压缩传感 计算机视觉 加速 模式识别(心理学) 数学 几何学 操作系统
作者
Ping Wang,Xin Yuan
标识
DOI:10.1145/3581783.3612242
摘要

Image Compressive Sensing (CS) enables compressed capture of natural images via a spatial multiplexing camera and accurate reconstruction from few measurements via an advanced algorithm. Deep learning, especially deep unfolding, has recently achieved impressive success in image CS reconstruction. However, existing learning-based methods have been developed for block (usually with 33 X 33 pixels) CS instead of full image CS. Apart from the difficulties in hardware implementation, block CS breaks the global pixel interactions, limiting the overall performance. In this paper, we propose the first two-dimensional deep unfolding framework, and further develop a Spatial-Attention Unfolding Network (SAUNet) for full image CS reconstruction by alternately performing a spatially-adaptive gradient descent module and a cross-stage multi-scale denoising module. The gradient descent module has the spatial self-adaptation to the degradation of in-process image. The denoising module is a three-level U-shaped structure powered by Convolutional Self-Attention (CSA) mechanism. Inspired by Transformer, CSA is designed to adaptively aggregate spatially local information and adaptively recalibrate channel-wise global information with only normal convolutional operator. Extensive experiments demonstrate that SAUNet outperforms the state-of-the-art methods by a large margin. The source code and pre-trained models are available at https://github.com/pwangcs/SAUNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鹦鹉发布了新的文献求助10
刚刚
刚刚
5秒前
安详水儿完成签到,获得积分10
5秒前
大模型应助大魔王波波采纳,获得10
6秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
7秒前
8秒前
9秒前
宁静致远完成签到,获得积分10
11秒前
情怀应助陈道哥采纳,获得20
11秒前
12秒前
12秒前
zhy完成签到,获得积分10
14秒前
朱文琛完成签到,获得积分10
16秒前
zc完成签到,获得积分10
16秒前
安小野完成签到,获得积分10
16秒前
17秒前
鹦鹉完成签到,获得积分10
18秒前
18秒前
WM应助明亮映阳采纳,获得10
19秒前
ooseabiscuit完成签到,获得积分10
21秒前
21秒前
21秒前
22秒前
科目三应助欢呼的豆芽采纳,获得10
22秒前
刘刘溜发布了新的文献求助10
23秒前
我是老大应助xuezhao采纳,获得10
23秒前
02完成签到,获得积分10
24秒前
在水一方应助知性的初露采纳,获得10
24秒前
发发发应助菠萝派采纳,获得20
24秒前
韩钰小宝发布了新的文献求助10
25秒前
陈道哥发布了新的文献求助20
25秒前
25秒前
wade2016发布了新的文献求助10
25秒前
27秒前
浅夏完成签到,获得积分10
27秒前
ylw发布了新的文献求助10
30秒前
30秒前
31秒前
钰钰yuyu完成签到,获得积分10
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312450
求助须知:如何正确求助?哪些是违规求助? 2945105
关于积分的说明 8522863
捐赠科研通 2620823
什么是DOI,文献DOI怎么找? 1433131
科研通“疑难数据库(出版商)”最低求助积分说明 664863
邀请新用户注册赠送积分活动 650231