A real-time method for detecting bottom defects of lithium batteries based on an improved YOLOv5 model

电池(电) 计算机科学 职位(财务) 块(置换群论) 锂(药物) 图层(电子) 功能(生物学) 特征(语言学) 算法 人工智能 模式识别(心理学) 材料科学 数学 功率(物理) 哲学 经济 复合材料 几何学 内分泌学 物理 生物 进化生物学 医学 量子力学 语言学 财务
作者
Yu Zhang,Shuangbao Shu,Xianli Lang,Huajun Liang,Ziqiao Yu,Ziqiang Yang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (12): 125149-125149 被引量:4
标识
DOI:10.1088/1361-6501/acf9bf
摘要

Abstract Defect detection of lithium batteries is a crucial step in lithium battery production. However, traditional detection methods mainly rely on the human eyes to observe the bottom defects of lithium battery products, which have low detection accuracy and slow detection speed. To solve this practical problem, an improved YOLOv5s model is proposed in this paper. Firstly, a new layer of the network output layer is added to improve the detection effect of small defects. Secondly, to extract important information in the feature maps, the convolutional block attention module attention mechanism is added to the YOLOv5s model. Finally, a new position loss function is used to improve the accuracy of the position prediction of the model. The experimental results indicate that the improved YOLOv5s model can accurately and quickly detect three types of defects on the bottom surface of lithium batteries. Specifically, the loss and mean average precision (mAP) of the improved YOLOv5s model are 0.033 94 and 67.5% respectively. Compared with the traditional YOLOv5s model, the loss of the improved YOLOv5s model is reduced by 31%. As well as, the mAP of the improved YOLOv5s model is increased by 4.3% on the lithium battery defect dataset. Compared with the YOLOv3, YOLOv3-spp, retinanet and YOLOv4, the mAP of the improved YOLOv5s model increased by 5.4%, 0.7%, 11.9% and 3.7% respectively. Compared with other improved YOLOv5 algorithms used in various fields, the mAP of the proposed model on the lithium battery dataset is the highest. The detection speed of the improved YOLOv5s model reaches 111 frames per second, which can meet the real-time detection requirements. The improved YOLOv5s model has board application prospects in the industrial production of lithium batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
甲子雨发布了新的文献求助10
1秒前
1秒前
Havoc发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
Boniu发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
guli完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
ogotho发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5354650
求助须知:如何正确求助?哪些是违规求助? 4486721
关于积分的说明 13967578
捐赠科研通 4387283
什么是DOI,文献DOI怎么找? 2410289
邀请新用户注册赠送积分活动 1402711
关于科研通互助平台的介绍 1376487