A real-time method for detecting bottom defects of lithium batteries based on an improved YOLOv5 model

电池(电) 计算机科学 职位(财务) 块(置换群论) 锂(药物) 图层(电子) 功能(生物学) 特征(语言学) 算法 人工智能 模式识别(心理学) 材料科学 数学 功率(物理) 哲学 经济 复合材料 几何学 内分泌学 物理 生物 进化生物学 医学 量子力学 语言学 财务
作者
Yu Zhang,Shuangbao Shu,Xianli Lang,Huajun Liang,Ziqiao Yu,Ziqiang Yang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (12): 125149-125149 被引量:4
标识
DOI:10.1088/1361-6501/acf9bf
摘要

Abstract Defect detection of lithium batteries is a crucial step in lithium battery production. However, traditional detection methods mainly rely on the human eyes to observe the bottom defects of lithium battery products, which have low detection accuracy and slow detection speed. To solve this practical problem, an improved YOLOv5s model is proposed in this paper. Firstly, a new layer of the network output layer is added to improve the detection effect of small defects. Secondly, to extract important information in the feature maps, the convolutional block attention module attention mechanism is added to the YOLOv5s model. Finally, a new position loss function is used to improve the accuracy of the position prediction of the model. The experimental results indicate that the improved YOLOv5s model can accurately and quickly detect three types of defects on the bottom surface of lithium batteries. Specifically, the loss and mean average precision (mAP) of the improved YOLOv5s model are 0.033 94 and 67.5% respectively. Compared with the traditional YOLOv5s model, the loss of the improved YOLOv5s model is reduced by 31%. As well as, the mAP of the improved YOLOv5s model is increased by 4.3% on the lithium battery defect dataset. Compared with the YOLOv3, YOLOv3-spp, retinanet and YOLOv4, the mAP of the improved YOLOv5s model increased by 5.4%, 0.7%, 11.9% and 3.7% respectively. Compared with other improved YOLOv5 algorithms used in various fields, the mAP of the proposed model on the lithium battery dataset is the highest. The detection speed of the improved YOLOv5s model reaches 111 frames per second, which can meet the real-time detection requirements. The improved YOLOv5s model has board application prospects in the industrial production of lithium batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
stuffmatter举报Lucky求助涉嫌违规
1秒前
1秒前
大模型应助隐形的皮卡丘采纳,获得10
2秒前
安安完成签到 ,获得积分10
2秒前
Zcccjy发布了新的文献求助10
2秒前
英俊牛排发布了新的文献求助10
7秒前
harry发布了新的文献求助10
8秒前
顾翩翩完成签到,获得积分10
12秒前
bkagyin应助知性的书竹采纳,获得10
12秒前
帅气念梦完成签到 ,获得积分10
14秒前
CodeCraft应助飞快的万声采纳,获得10
15秒前
15秒前
脑洞疼应助nuisance采纳,获得10
17秒前
yun发布了新的文献求助10
17秒前
bole发布了新的文献求助10
18秒前
小楠楠发布了新的文献求助10
18秒前
Gyrate完成签到,获得积分10
19秒前
20秒前
Shishulong发布了新的文献求助10
20秒前
李爱国应助Silence采纳,获得10
20秒前
23秒前
24秒前
25秒前
互助遵法尚德应助ZZRR采纳,获得10
25秒前
YJY完成签到,获得积分10
26秒前
27秒前
29秒前
Richard发布了新的文献求助10
30秒前
一薪发布了新的文献求助10
31秒前
交院发布了新的文献求助10
31秒前
牛肉拉面完成签到,获得积分20
32秒前
星辰大海应助王玄琳采纳,获得10
34秒前
科研的狗完成签到 ,获得积分10
34秒前
35秒前
36秒前
体贴海白发布了新的文献求助20
36秒前
37秒前
共享精神应助科研探索者采纳,获得10
37秒前
半斤发布了新的文献求助10
37秒前
顾矜应助闪闪善若采纳,获得10
37秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329232
求助须知:如何正确求助?哪些是违规求助? 2959017
关于积分的说明 8593599
捐赠科研通 2637442
什么是DOI,文献DOI怎么找? 1443516
科研通“疑难数据库(出版商)”最低求助积分说明 668773
邀请新用户注册赠送积分活动 656119