A real-time method for detecting bottom defects of lithium batteries based on an improved YOLOv5 model

电池(电) 计算机科学 职位(财务) 块(置换群论) 锂(药物) 图层(电子) 功能(生物学) 特征(语言学) 算法 人工智能 模式识别(心理学) 材料科学 数学 功率(物理) 哲学 经济 复合材料 几何学 内分泌学 物理 生物 进化生物学 医学 量子力学 语言学 财务
作者
Yu Zhang,Shuangbao Shu,Xianli Lang,Huajun Liang,Ziqiao Yu,Ziqiang Yang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (12): 125149-125149 被引量:15
标识
DOI:10.1088/1361-6501/acf9bf
摘要

Abstract Defect detection of lithium batteries is a crucial step in lithium battery production. However, traditional detection methods mainly rely on the human eyes to observe the bottom defects of lithium battery products, which have low detection accuracy and slow detection speed. To solve this practical problem, an improved YOLOv5s model is proposed in this paper. Firstly, a new layer of the network output layer is added to improve the detection effect of small defects. Secondly, to extract important information in the feature maps, the convolutional block attention module attention mechanism is added to the YOLOv5s model. Finally, a new position loss function is used to improve the accuracy of the position prediction of the model. The experimental results indicate that the improved YOLOv5s model can accurately and quickly detect three types of defects on the bottom surface of lithium batteries. Specifically, the loss and mean average precision (mAP) of the improved YOLOv5s model are 0.033 94 and 67.5% respectively. Compared with the traditional YOLOv5s model, the loss of the improved YOLOv5s model is reduced by 31%. As well as, the mAP of the improved YOLOv5s model is increased by 4.3% on the lithium battery defect dataset. Compared with the YOLOv3, YOLOv3-spp, retinanet and YOLOv4, the mAP of the improved YOLOv5s model increased by 5.4%, 0.7%, 11.9% and 3.7% respectively. Compared with other improved YOLOv5 algorithms used in various fields, the mAP of the proposed model on the lithium battery dataset is the highest. The detection speed of the improved YOLOv5s model reaches 111 frames per second, which can meet the real-time detection requirements. The improved YOLOv5s model has board application prospects in the industrial production of lithium batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助静仰星空采纳,获得10
1秒前
1秒前
2秒前
2秒前
lin发布了新的文献求助10
2秒前
脑洞疼应助自由鱼儿采纳,获得10
3秒前
3秒前
侯总应助陈进采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
Michelle完成签到,获得积分20
5秒前
沈佳宁发布了新的文献求助10
5秒前
端庄大米发布了新的文献求助10
5秒前
6秒前
洋洋洋发布了新的文献求助10
6秒前
隐形曼青应助cyy采纳,获得10
6秒前
6秒前
6秒前
李健应助linnn采纳,获得20
6秒前
流星芽芽发布了新的文献求助10
7秒前
姚盈盈发布了新的文献求助10
7秒前
hanyue发布了新的文献求助50
7秒前
晚棠完成签到 ,获得积分10
7秒前
汏流萤发布了新的文献求助10
8秒前
侯总应助R_joy采纳,获得10
8秒前
Owen应助ljy采纳,获得10
8秒前
852应助难过的大白菜采纳,获得10
8秒前
莹小郭完成签到 ,获得积分10
9秒前
小龙发布了新的文献求助10
11秒前
11秒前
12秒前
梦清雅发布了新的文献求助30
12秒前
Wawoo发布了新的文献求助30
12秒前
13秒前
今后应助高兴的风华采纳,获得10
14秒前
15秒前
在水一方应助洋洋洋采纳,获得10
16秒前
躺平的洋仔完成签到,获得积分10
16秒前
合适台灯完成签到,获得积分10
17秒前
17秒前
17秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582941
求助须知:如何正确求助?哪些是违规求助? 4666938
关于积分的说明 14764497
捐赠科研通 4608955
什么是DOI,文献DOI怎么找? 2528962
邀请新用户注册赠送积分活动 1498257
关于科研通互助平台的介绍 1466905