A real-time method for detecting bottom defects of lithium batteries based on an improved YOLOv5 model

电池(电) 计算机科学 职位(财务) 块(置换群论) 锂(药物) 图层(电子) 功能(生物学) 特征(语言学) 算法 人工智能 模式识别(心理学) 材料科学 数学 功率(物理) 哲学 经济 复合材料 几何学 内分泌学 物理 生物 进化生物学 医学 量子力学 语言学 财务
作者
Yu Zhang,Shuangbao Shu,Xianli Lang,Huajun Liang,Ziqiao Yu,Ziqiang Yang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (12): 125149-125149 被引量:4
标识
DOI:10.1088/1361-6501/acf9bf
摘要

Abstract Defect detection of lithium batteries is a crucial step in lithium battery production. However, traditional detection methods mainly rely on the human eyes to observe the bottom defects of lithium battery products, which have low detection accuracy and slow detection speed. To solve this practical problem, an improved YOLOv5s model is proposed in this paper. Firstly, a new layer of the network output layer is added to improve the detection effect of small defects. Secondly, to extract important information in the feature maps, the convolutional block attention module attention mechanism is added to the YOLOv5s model. Finally, a new position loss function is used to improve the accuracy of the position prediction of the model. The experimental results indicate that the improved YOLOv5s model can accurately and quickly detect three types of defects on the bottom surface of lithium batteries. Specifically, the loss and mean average precision (mAP) of the improved YOLOv5s model are 0.033 94 and 67.5% respectively. Compared with the traditional YOLOv5s model, the loss of the improved YOLOv5s model is reduced by 31%. As well as, the mAP of the improved YOLOv5s model is increased by 4.3% on the lithium battery defect dataset. Compared with the YOLOv3, YOLOv3-spp, retinanet and YOLOv4, the mAP of the improved YOLOv5s model increased by 5.4%, 0.7%, 11.9% and 3.7% respectively. Compared with other improved YOLOv5 algorithms used in various fields, the mAP of the proposed model on the lithium battery dataset is the highest. The detection speed of the improved YOLOv5s model reaches 111 frames per second, which can meet the real-time detection requirements. The improved YOLOv5s model has board application prospects in the industrial production of lithium batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助hdbys采纳,获得10
刚刚
刚刚
1秒前
绕地球3圈发布了新的文献求助10
1秒前
newman完成签到,获得积分10
1秒前
10发布了新的文献求助10
1秒前
小怪兽发布了新的文献求助10
2秒前
雾失楼台完成签到,获得积分10
2秒前
苏杉杉发布了新的文献求助10
3秒前
BINGBING发布了新的文献求助10
3秒前
可爱芷容完成签到,获得积分10
5秒前
落雁发布了新的文献求助10
5秒前
gsgg完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
7秒前
热血马儿完成签到,获得积分10
7秒前
W1发布了新的文献求助10
8秒前
苹果蜗牛发布了新的文献求助10
8秒前
绕地球3圈完成签到,获得积分10
8秒前
凭栏听雨完成签到,获得积分10
8秒前
SYLH应助dtjvb采纳,获得10
8秒前
酷炫翠桃应助强扭的瓜采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
9秒前
愉快的真应助科研通管家采纳,获得100
9秒前
一裤子灰完成签到,获得积分10
9秒前
yar应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
愉快的真应助科研通管家采纳,获得100
9秒前
慕青应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
10秒前
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
KK发布了新的文献求助10
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
KK发布了新的文献求助10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650