AI as an Apolitical Referee: Using Alternative Sources to Decrease Partisan Biases in the Processing of Fact-Checking Messages

误传 可靠性 众包 来源可信度 政治 考试(生物学) 差异(会计) 社会心理学 心理学 计算机科学 政治学 法学 万维网 计算机安全 经济 古生物学 会计 生物
作者
Myojung Chung,Won-Ki Moon,S. Mo Jang
出处
期刊:Digital journalism [Taylor & Francis]
卷期号:: 1-22 被引量:7
标识
DOI:10.1080/21670811.2023.2254820
摘要

AbstractWhile fact-checking has received much attention as a tool to fight misinformation online, fact-checking efforts have yielded limited success in combating political misinformation due to partisans' biased information processing. The efficacy of fact-checking often decreases, if not backfires, when the fact-checking messages contradict individual audiences' political stance. To explore ways to minimize such politically biased processing of fact-checking messages, an online experiment (N = 645) examined how different source labels of fact-checking messages (human experts vs. AI vs. crowdsourcing vs. human experts-AI hybrid) influence partisans' processing of fact-checking messages. Results showed that AI and crowdsourcing source labels significantly reduced motivated reasoning in evaluating the credibility of fact-checking messages whereas the partisan bias remained evident for the human experts and human experts-AI hybrid source labels.Keywords: AIartificial intelligencefact-checkingmisinformationmessage credibilityfake newsmotivated reasoningsocial media Disclosure StatementNo potential conflict of interest was reported by the author(s).Notes1 A series of analysis of variance (ANOVA) and Chi-square tests found no significant demographic differences between conditions (p = .099 for age; p = .522 for gender; p = .417 for income; p = .364 for education; p = .549 for political partisanship; p = .153 for political ideology, p = .493 for frequency of social media use). Thus, randomization was deemed successful.2 To further explore differences in message credibility across the four fact-checking source labels, one-way ANOVA and a Bonferroni post hoc test were conducted. The results showed that there are significant differences across the four source labels in shaping message credibility, F(3, 641) = 2.82, p = .038, Cohen's d = 0.23. Those in the AI condition reported the highest message credibility (M = 3.89, SD = 0.79), followed by the human experts condition (M = 3.86, SD = 0.89) and the human experts-AI condition (M = 3.84, SD = 0.81). The crowdsourcing condition showed the lowest message credibility (M = 3.66, SD = 0.81). The post hoc test indicated that the AI source label induced significantly higher message credibility than the crowdsourcing source label (p = .042). However, no significant differences were found among other source labels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利小笼包完成签到 ,获得积分10
刚刚
Lydia完成签到,获得积分10
刚刚
1秒前
斯文败类应助俊逸红牛采纳,获得10
1秒前
天凉王破完成签到 ,获得积分10
2秒前
菠菜发布了新的文献求助10
2秒前
西红柿发布了新的文献求助10
3秒前
nlix给nlix的求助进行了留言
3秒前
3秒前
ding应助失眠的珩采纳,获得10
4秒前
5秒前
ccob完成签到,获得积分10
5秒前
小云杉应助Ziyi_Xu采纳,获得30
6秒前
沈昊发布了新的文献求助10
6秒前
俊逸红牛完成签到,获得积分10
7秒前
了0完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
深情安青应助1134采纳,获得10
10秒前
勤劳幼晴发布了新的文献求助10
10秒前
lala完成签到,获得积分10
10秒前
路路顺风完成签到,获得积分10
10秒前
jiang发布了新的文献求助20
11秒前
11秒前
伊伊完成签到,获得积分10
12秒前
13秒前
mao完成签到,获得积分10
13秒前
tszjw168发布了新的文献求助10
14秒前
15秒前
16秒前
Hello应助西红柿采纳,获得10
16秒前
moon发布了新的文献求助10
17秒前
18秒前
乐乐应助lala采纳,获得10
19秒前
爆米花应助qqqq采纳,获得10
19秒前
20秒前
20秒前
蓝天黄土发布了新的文献求助20
20秒前
坤坤蹦蹦跳跳完成签到,获得积分10
20秒前
赫连紫完成签到,获得积分10
21秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010435
求助须知:如何正确求助?哪些是违规求助? 3550258
关于积分的说明 11305330
捐赠科研通 3284688
什么是DOI,文献DOI怎么找? 1810836
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811470