A novel necroptosis related gene signature and regulatory network for overall survival prediction in lung adenocarcinoma

坏死性下垂 签名(拓扑) 基因签名 基因 腺癌 基因调控网络 计算生物学 生物 生物信息学 遗传学 基因表达 癌症 细胞凋亡 程序性细胞死亡 数学 几何学
作者
Guoyu Wang,Xue Liu,Huaman Liu,Xinyue Zhang,Yumeng Shao,Xinhua Jia
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:5
标识
DOI:10.1038/s41598-023-41998-2
摘要

Abstract We downloaded the mRNA expression profiles of patients with LUAD and corresponding clinical data from The Cancer Genome Atlas (TCGA) database and used the Least Absolute Shrinkage and Selection Operator Cox regression model to construct a multigene signature in the TCGA cohort, which was validated with patient data from the GEO cohort. Results showed differences in the expression levels of 120 necroptosis-related genes between normal and tumor tissues. An eight-gene signature (CYLD, FADD, H2AX, RBCK1, PPIA, PPID, VDAC1, and VDAC2) was constructed through univariate Cox regression, and patients were divided into two risk groups. The overall survival of patients in the high-risk group was significantly lower than of the patients in the low-risk group in the TCGA and GEO cohorts, indicating that the signature has a good predictive effect. The time-ROC curves revealed that the signature had a reliable predictive role in both the TCGA and GEO cohorts. Enrichment analysis showed that differential genes in the risk subgroups were associated with tumor immunity and antitumor drug sensitivity. We then constructed an mRNA–miRNA–lncRNA regulatory network, which identified lncRNA AL590666. 2/let-7c-5p/PPIA as a regulatory axis for LUAD. Real-time quantitative PCR (RT-qPCR) was used to validate the expression of the 8-gene signature. In conclusion, necroptosis-related genes are important factors for predicting the prognosis of LUAD and potential therapeutic targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
鸭子发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
majf发布了新的文献求助10
1秒前
2秒前
小蘑菇应助咕嘟采纳,获得10
2秒前
2秒前
2222完成签到,获得积分10
3秒前
sen发布了新的文献求助10
3秒前
Swift168_YY发布了新的文献求助10
3秒前
哈尼完成签到,获得积分10
4秒前
弓长发布了新的文献求助30
4秒前
Ava应助顺利的奇异果采纳,获得10
4秒前
ZephyrZY完成签到,获得积分10
4秒前
情怀应助顾顾采纳,获得10
4秒前
小满完成签到,获得积分10
4秒前
sy1639发布了新的文献求助10
5秒前
任意门完成签到,获得积分10
5秒前
5秒前
NexusExplorer应助envy采纳,获得10
5秒前
坚定晓兰发布了新的文献求助10
6秒前
6秒前
Jeff_Lin应助烂好人采纳,获得10
6秒前
6秒前
若初拾光发布了新的文献求助10
7秒前
12131发布了新的文献求助10
8秒前
香蕉觅云应助chixueqi采纳,获得10
8秒前
9秒前
清爽灰狼发布了新的文献求助10
9秒前
威武绝山发布了新的文献求助10
9秒前
llllliu发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
烟花发布了新的文献求助10
11秒前
12秒前
12秒前
高分求助中
Incubation and Hatchery Performance, The Devil is in the Details 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5204680
求助须知:如何正确求助?哪些是违规求助? 4383701
关于积分的说明 13650154
捐赠科研通 4241580
什么是DOI,文献DOI怎么找? 2326956
邀请新用户注册赠送积分活动 1324605
关于科研通互助平台的介绍 1276907