A novel necroptosis related gene signature and regulatory network for overall survival prediction in lung adenocarcinoma

坏死性下垂 签名(拓扑) 基因签名 基因 腺癌 基因调控网络 计算生物学 生物 生物信息学 遗传学 基因表达 癌症 细胞凋亡 程序性细胞死亡 数学 几何学
作者
Guoyu Wang,Xue Liu,Huaman Liu,Xinyue Zhang,Yumeng Shao,Xinhua Jia
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:5
标识
DOI:10.1038/s41598-023-41998-2
摘要

Abstract We downloaded the mRNA expression profiles of patients with LUAD and corresponding clinical data from The Cancer Genome Atlas (TCGA) database and used the Least Absolute Shrinkage and Selection Operator Cox regression model to construct a multigene signature in the TCGA cohort, which was validated with patient data from the GEO cohort. Results showed differences in the expression levels of 120 necroptosis-related genes between normal and tumor tissues. An eight-gene signature (CYLD, FADD, H2AX, RBCK1, PPIA, PPID, VDAC1, and VDAC2) was constructed through univariate Cox regression, and patients were divided into two risk groups. The overall survival of patients in the high-risk group was significantly lower than of the patients in the low-risk group in the TCGA and GEO cohorts, indicating that the signature has a good predictive effect. The time-ROC curves revealed that the signature had a reliable predictive role in both the TCGA and GEO cohorts. Enrichment analysis showed that differential genes in the risk subgroups were associated with tumor immunity and antitumor drug sensitivity. We then constructed an mRNA–miRNA–lncRNA regulatory network, which identified lncRNA AL590666. 2/let-7c-5p/PPIA as a regulatory axis for LUAD. Real-time quantitative PCR (RT-qPCR) was used to validate the expression of the 8-gene signature. In conclusion, necroptosis-related genes are important factors for predicting the prognosis of LUAD and potential therapeutic targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雾昂发布了新的文献求助10
1秒前
CipherSage应助不爱吃饭采纳,获得10
1秒前
汪哈七发布了新的文献求助10
1秒前
丹丹发布了新的文献求助10
1秒前
less完成签到,获得积分10
2秒前
wanci应助月之暗面采纳,获得10
2秒前
zhizhi完成签到,获得积分10
3秒前
wqkkk完成签到,获得积分10
3秒前
Feng发布了新的文献求助20
4秒前
4秒前
4秒前
情怀应助123采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
静心安逸完成签到,获得积分10
4秒前
李健的粉丝团团长应助hh采纳,获得10
5秒前
隐形曼青应助滴滴滴采纳,获得10
5秒前
任性的蝴蝶完成签到,获得积分10
5秒前
han发布了新的文献求助10
5秒前
卷卷完成签到 ,获得积分10
6秒前
6秒前
6秒前
ethen完成签到,获得积分10
7秒前
7秒前
7秒前
li完成签到 ,获得积分10
7秒前
玛丽发布了新的文献求助20
7秒前
Will完成签到,获得积分10
7秒前
tutu完成签到,获得积分10
8秒前
8秒前
Anthony发布了新的文献求助10
8秒前
含糊的鞋垫完成签到,获得积分10
8秒前
Lucas应助TobyGarfielD采纳,获得10
8秒前
坦率的文龙完成签到,获得积分10
8秒前
贺宁杰完成签到,获得积分10
8秒前
9秒前
9秒前
干净白容发布了新的文献求助10
10秒前
10秒前
Akim应助lzcnextdoor采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615303
求助须知:如何正确求助?哪些是违规求助? 4019099
关于积分的说明 12440991
捐赠科研通 3702052
什么是DOI,文献DOI怎么找? 2041414
邀请新用户注册赠送积分活动 1074129
科研通“疑难数据库(出版商)”最低求助积分说明 957743