A novel necroptosis related gene signature and regulatory network for overall survival prediction in lung adenocarcinoma

坏死性下垂 签名(拓扑) 基因签名 基因 腺癌 基因调控网络 计算生物学 生物 生物信息学 遗传学 基因表达 癌症 细胞凋亡 程序性细胞死亡 数学 几何学
作者
Guoyu Wang,Xue Liu,Huaman Liu,Xinyue Zhang,Yumeng Shao,Xinhua Jia
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:5
标识
DOI:10.1038/s41598-023-41998-2
摘要

Abstract We downloaded the mRNA expression profiles of patients with LUAD and corresponding clinical data from The Cancer Genome Atlas (TCGA) database and used the Least Absolute Shrinkage and Selection Operator Cox regression model to construct a multigene signature in the TCGA cohort, which was validated with patient data from the GEO cohort. Results showed differences in the expression levels of 120 necroptosis-related genes between normal and tumor tissues. An eight-gene signature (CYLD, FADD, H2AX, RBCK1, PPIA, PPID, VDAC1, and VDAC2) was constructed through univariate Cox regression, and patients were divided into two risk groups. The overall survival of patients in the high-risk group was significantly lower than of the patients in the low-risk group in the TCGA and GEO cohorts, indicating that the signature has a good predictive effect. The time-ROC curves revealed that the signature had a reliable predictive role in both the TCGA and GEO cohorts. Enrichment analysis showed that differential genes in the risk subgroups were associated with tumor immunity and antitumor drug sensitivity. We then constructed an mRNA–miRNA–lncRNA regulatory network, which identified lncRNA AL590666. 2/let-7c-5p/PPIA as a regulatory axis for LUAD. Real-time quantitative PCR (RT-qPCR) was used to validate the expression of the 8-gene signature. In conclusion, necroptosis-related genes are important factors for predicting the prognosis of LUAD and potential therapeutic targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
箴言完成签到,获得积分10
1秒前
科研通AI6应助阿尔宙斯采纳,获得10
4秒前
Bluebulu完成签到,获得积分10
4秒前
希望天下0贩的0应助Joker采纳,获得10
4秒前
baiseqiutian完成签到,获得积分10
4秒前
XIAOFA完成签到,获得积分10
4秒前
小鹿呀完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
Brett_Liu完成签到,获得积分10
7秒前
酷酷一笑完成签到,获得积分10
8秒前
Link完成签到,获得积分10
8秒前
8秒前
9秒前
LPJ完成签到,获得积分10
9秒前
迷路荷花完成签到,获得积分20
9秒前
小马发布了新的文献求助10
9秒前
10秒前
shaomei发布了新的文献求助30
10秒前
10秒前
充电宝应助nextconnie采纳,获得10
11秒前
Ting应助qq采纳,获得20
11秒前
美好向日葵完成签到,获得积分10
11秒前
小阿发发布了新的文献求助30
11秒前
12秒前
12秒前
12秒前
zhull发布了新的文献求助20
13秒前
悦悦发布了新的文献求助10
13秒前
mashibeo发布了新的文献求助10
13秒前
yang发布了新的文献求助10
14秒前
可爱的函函应助wxxz采纳,获得10
14秒前
14秒前
14秒前
思源应助FFFFF采纳,获得10
14秒前
15秒前
昏睡的蟠桃应助biogarfield采纳,获得200
15秒前
SciGPT应助糖豆采纳,获得10
15秒前
Zoe发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360761
求助须知:如何正确求助?哪些是违规求助? 4491279
关于积分的说明 13981825
捐赠科研通 4393949
什么是DOI,文献DOI怎么找? 2413668
邀请新用户注册赠送积分活动 1406502
关于科研通互助平台的介绍 1381004