A novel necroptosis related gene signature and regulatory network for overall survival prediction in lung adenocarcinoma

坏死性下垂 签名(拓扑) 基因签名 基因 腺癌 基因调控网络 计算生物学 生物 生物信息学 遗传学 基因表达 癌症 细胞凋亡 程序性细胞死亡 数学 几何学
作者
Guoyu Wang,Xue Liu,Huaman Liu,Xinyue Zhang,Yumeng Shao,Xinhua Jia
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:5
标识
DOI:10.1038/s41598-023-41998-2
摘要

Abstract We downloaded the mRNA expression profiles of patients with LUAD and corresponding clinical data from The Cancer Genome Atlas (TCGA) database and used the Least Absolute Shrinkage and Selection Operator Cox regression model to construct a multigene signature in the TCGA cohort, which was validated with patient data from the GEO cohort. Results showed differences in the expression levels of 120 necroptosis-related genes between normal and tumor tissues. An eight-gene signature (CYLD, FADD, H2AX, RBCK1, PPIA, PPID, VDAC1, and VDAC2) was constructed through univariate Cox regression, and patients were divided into two risk groups. The overall survival of patients in the high-risk group was significantly lower than of the patients in the low-risk group in the TCGA and GEO cohorts, indicating that the signature has a good predictive effect. The time-ROC curves revealed that the signature had a reliable predictive role in both the TCGA and GEO cohorts. Enrichment analysis showed that differential genes in the risk subgroups were associated with tumor immunity and antitumor drug sensitivity. We then constructed an mRNA–miRNA–lncRNA regulatory network, which identified lncRNA AL590666. 2/let-7c-5p/PPIA as a regulatory axis for LUAD. Real-time quantitative PCR (RT-qPCR) was used to validate the expression of the 8-gene signature. In conclusion, necroptosis-related genes are important factors for predicting the prognosis of LUAD and potential therapeutic targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fhbsdufh发布了新的文献求助10
1秒前
朽木发布了新的文献求助20
1秒前
小寒0812完成签到,获得积分10
1秒前
1秒前
zhangzhisenn发布了新的文献求助10
1秒前
脑残骑士老张完成签到,获得积分10
1秒前
一夜暴富发布了新的文献求助10
2秒前
黄建雨发布了新的文献求助10
2秒前
2秒前
研友_VZG7GZ应助fate0325采纳,获得10
2秒前
3秒前
龍Ryu发布了新的文献求助10
4秒前
bkagyin应助LiDaYang采纳,获得10
4秒前
李健应助小邢科研版采纳,获得30
4秒前
4秒前
111发布了新的文献求助10
5秒前
加菲丰丰举报求助违规成功
5秒前
whatever举报求助违规成功
5秒前
cocolu举报求助违规成功
5秒前
5秒前
5秒前
yunchaozhang发布了新的文献求助10
6秒前
鸠鸠发布了新的文献求助10
8秒前
科研通AI2S应助XXXX采纳,获得10
9秒前
An慧完成签到,获得积分10
9秒前
10秒前
有Data发Paper完成签到,获得积分10
10秒前
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
打打应助科研通管家采纳,获得30
11秒前
三月聚粮应助科研通管家采纳,获得10
11秒前
完美世界应助朽木采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
12秒前
李爱国应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
今后应助科研通管家采纳,获得10
12秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328293
求助须知:如何正确求助?哪些是违规求助? 2958349
关于积分的说明 8590122
捐赠科研通 2636664
什么是DOI,文献DOI怎么找? 1443107
科研通“疑难数据库(出版商)”最低求助积分说明 668515
邀请新用户注册赠送积分活动 655740