Bayesian Inference on High-Dimensional Multivariate Binary Responses

多元统计 推论 贝叶斯概率 贝叶斯推理 多元分析 二进制数 计算机科学 统计 数学 人工智能 算术
作者
Antik Chakraborty,Rihui Ou,David B. Dunson
标识
DOI:10.1080/01621459.2023.2260053
摘要

It has become increasingly common to collect high-dimensional binary response data; for example, with the emergence of new sampling techniques in ecology. In smaller dimensions, multivariate probit (MVP) models are routinely used for inferences. However, algorithms for fitting such models face issues in scaling up to high dimensions due to the intractability of the likelihood, involving an integral over a multivariate normal distribution having no analytic form. Although a variety of algorithms have been proposed to approximate this intractable integral, these approaches are difficult to implement and/or inaccurate in high dimensions. Our main focus is in accommodating high-dimensional binary response data with a small-to-moderate number of covariates. We propose a two-stage approach for inference on model parameters while taking care of uncertainty propagation between the stages. We use the special structure of latent Gaussian models to reduce the highly expensive computation involved in joint parameter estimation to focus inference on marginal distributions of model parameters. This essentially makes the method embarrassingly parallel for both stages. We illustrate performance in simulations and applications to joint species distribution modeling in ecology. Supplementary materials for this article are available online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
witting发布了新的文献求助10
1秒前
JamesPei应助无限的元珊采纳,获得10
1秒前
慕青应助峰1992采纳,获得10
1秒前
西客发布了新的文献求助10
2秒前
汉堡包应助科研通管家采纳,获得10
5秒前
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
爱静静应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
储祥群发布了新的文献求助10
7秒前
豆沙包789完成签到 ,获得积分10
7秒前
隐形曼青应助安详的书本采纳,获得10
8秒前
9秒前
天道酬勤发布了新的文献求助10
9秒前
10秒前
月亮球发布了新的文献求助10
10秒前
10秒前
pxq完成签到,获得积分10
10秒前
高贵碧凡完成签到,获得积分10
11秒前
小谢完成签到,获得积分10
12秒前
bruce11完成签到,获得积分10
12秒前
12秒前
15秒前
15秒前
HongJiang发布了新的文献求助10
17秒前
Yojane发布了新的文献求助10
17秒前
kk完成签到,获得积分10
18秒前
铁路网125发布了新的文献求助10
19秒前
月亮球完成签到,获得积分20
19秒前
19秒前
小马甲应助会会跑跑跑采纳,获得10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310609
求助须知:如何正确求助?哪些是违规求助? 2943401
关于积分的说明 8514871
捐赠科研通 2618733
什么是DOI,文献DOI怎么找? 1431388
科研通“疑难数据库(出版商)”最低求助积分说明 664462
邀请新用户注册赠送积分活动 649626