Bayesian Inference on High-Dimensional Multivariate Binary Responses

多元统计 推论 贝叶斯概率 贝叶斯推理 多元分析 二进制数 计算机科学 统计 数学 人工智能 算术
作者
Antik Chakraborty,Rihui Ou,David B. Dunson
标识
DOI:10.1080/01621459.2023.2260053
摘要

It has become increasingly common to collect high-dimensional binary response data; for example, with the emergence of new sampling techniques in ecology. In smaller dimensions, multivariate probit (MVP) models are routinely used for inferences. However, algorithms for fitting such models face issues in scaling up to high dimensions due to the intractability of the likelihood, involving an integral over a multivariate normal distribution having no analytic form. Although a variety of algorithms have been proposed to approximate this intractable integral, these approaches are difficult to implement and/or inaccurate in high dimensions. Our main focus is in accommodating high-dimensional binary response data with a small-to-moderate number of covariates. We propose a two-stage approach for inference on model parameters while taking care of uncertainty propagation between the stages. We use the special structure of latent Gaussian models to reduce the highly expensive computation involved in joint parameter estimation to focus inference on marginal distributions of model parameters. This essentially makes the method embarrassingly parallel for both stages. We illustrate performance in simulations and applications to joint species distribution modeling in ecology. Supplementary materials for this article are available online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
江湖护卫舰完成签到 ,获得积分10
1秒前
负负得正发布了新的文献求助10
2秒前
3秒前
研友_VZG7GZ应助Zyq1231采纳,获得10
3秒前
刘倩发布了新的文献求助10
3秒前
浮游应助luo采纳,获得10
4秒前
Xwenhui发布了新的文献求助10
4秒前
4秒前
4秒前
咸鱼lmye完成签到 ,获得积分20
4秒前
科研通AI6应助现代的无春采纳,获得10
5秒前
5秒前
南枫发布了新的文献求助10
5秒前
7秒前
一二完成签到 ,获得积分10
7秒前
7秒前
7秒前
7秒前
8秒前
唐唐完成签到,获得积分10
8秒前
阳光完成签到,获得积分10
9秒前
9秒前
JamesPei应助wang采纳,获得10
9秒前
9秒前
9秒前
w11完成签到,获得积分10
9秒前
Hello应助厨师长采纳,获得10
9秒前
小飞鼠爱丽丝完成签到,获得积分10
10秒前
Rylee发布了新的文献求助10
10秒前
10秒前
10秒前
峥玄完成签到,获得积分10
10秒前
10秒前
11秒前
luo完成签到,获得积分10
11秒前
LABUBU完成签到,获得积分20
11秒前
hnxxangel发布了新的文献求助10
11秒前
wmt完成签到,获得积分20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260690
求助须知:如何正确求助?哪些是违规求助? 4422036
关于积分的说明 13764988
捐赠科研通 4296360
什么是DOI,文献DOI怎么找? 2357306
邀请新用户注册赠送积分活动 1353657
关于科研通互助平台的介绍 1314921