Sodium-Beta Alumina and Its Application in a Novel Sodium-Based Solid-State Cell Concept

电解质 电化学 材料科学 离子电导率 快离子导体 储能 化学工程 电导率 化学 电极 冶金 物理 物理化学 量子力学 工程类 功率(物理)
作者
Micha P. Fertig,Cornelius Dirksen,Karl Skadell,Matthias Schulz,Michael Stelter
出处
期刊:Meeting abstracts 卷期号:MA2023-01 (6): 1000-1000
标识
DOI:10.1149/ma2023-0161000mtgabs
摘要

Post-Li-ion technologies are inevitable for solving problems connected to Li-ion cells, namely shortage of raw materials and physicochemical limits in energy density. Substitution of lithium with sodium while simultaneously replacing the liquid electrolyte with a ceramic solid electrolyte is a promising alternative. 1 Sodium-beta alumina is a solid-state electrolyte with outstanding chemical, electrochemical, and mechanical properties. 2 So far, high-temperature cells have been using it as a solid electrolyte. 3,4 However, we recently showed that the sodium-ion conducting sodium-beta alumina solid electrolyte (BASE) is also a suitable solid electrolyte for solid-state cells operating at middle- to low temperatures. We present methods commonly used to reduce the area-specific capacity at the interfaces, stemming from the poor interaction of the rigid solid electrolyte with its adjacent electrodes. Hence, we tackle the bottleneck of middle- to low-temperature solid-state cell systems utilizing BASE, leading to enhanced cell performance. 2 To increase the electrochemical performance, adjusting BASE´s properties is necessary. We showed that 3d transition metal doping tunes BASE´s properties effectively. For example, Ti 4+ doping assisted a liquid sintering process, which changed the microstructure. Thus, BASE´s ionic conductivity increased by 50%. Simultaneously, we increased BASE´s fracture strength while reducing energy costs. 5 Furthermore, we demonstrate the importance of proper storage conditions. We elucidate the effect of humidity on disk-shaped samples of Li-stabilized sodium-beta alumina and quantify the negative consequences of improper storage for cell systems using sodium-beta alumina. Despite detrimental effects on ionic conductivity and the chemical composition, the critical current density collapsed from the maximum of 9.1 mA cm -2 , one of the highest values reported for sodium-beta alumina, to only 1.7 mA cm -2 at 25 °C. We show how impedance analysis and additional characterizations assist in clarifying occurring degradation mechanisms, namely ion exchange and subsequent buildup of surface layers. 6 Combining the knowledge from previous works, we provide a proof-of-concept for a novel sodium-based solid-state cell concept utilizing sodium-beta alumina. We use sodium metal as the negative electrode, which is necessary to achieve high specific energy and the requirement to compete with existing cell systems. An environmentally friendly transition metal oxide positive electrode with high specific energy is paired with the negative electrode. A composite positive electrode ensures intra-electrode conduction while enabling a facile charge transfer due to an intimate electrolyte–electrode interface contact, leading to stable cycling over 50 cycles with good energy retention. We think that the proof-of-concept opens the door for dozens of new material combinations and enhances the utilization of sodium-beta alumina in medium- to low-temperature solid-state cell systems. All in all, the presentation points out the excellent performance and the enormous potential of sodium-beta alumina for sodium-based energy storage technologies. References Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 1167; 10.1038/nenergy.2016.141 (2016). Fertig, M. P. et al. From High‐ to Low‐Temperature: The Revival of Sodium‐Beta Alumina for Sodium Solid‐State Batteries. Batteries & Supercaps ; 10.1002/batt.202100131 (2022). Sudworth, J. The sodium/nickel chloride (ZEBRA) battery. Journal of Power Sources 100, 149–163; 10.1016/S0378-7753(01)00891-6 (2001). BASF New Business GmbH. Stationary Energy Storage. High-energy, long-duration sodium-sulfur battery (Ludwigshafen am Rhein, 2020). Dirksen, C. L., Skadell, K., Schulz, M., Fertig, M. P. & Stelter, M. Influence of 3d Transition Metal Doping on Lithium Stabilized Na-β″-Alumina Solid Electrolytes. Materials (Basel, Switzerland) 14, 5389; 10.3390/ma14185389 (2021). Fertig, M. P., Dirksen, C., Schulz, M. & Stelter, M. Humidity-Induced Degradation of Lithium-Stabilized Sodium-Beta Alumina Solid Electrolytes. Batteries 8, 103; 10.3390/batteries8090103 (2022). [Figure 1. Schematic illustrating the abstract submission´s topics. Pictures adapted from Ref. 2,6 ] Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助ccyrichard采纳,获得10
刚刚
刚刚
刚刚
噜噜噜噜噜完成签到,获得积分10
1秒前
leez完成签到,获得积分10
1秒前
hohokuz发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
赘婿应助mrmrer采纳,获得10
3秒前
3秒前
赘婿应助三九采纳,获得10
3秒前
4秒前
4秒前
GEeZiii发布了新的文献求助10
4秒前
4秒前
7777777发布了新的文献求助10
4秒前
研友_nv2r4n发布了新的文献求助10
4秒前
Bman完成签到,获得积分10
5秒前
sakurai应助愤怒的寄琴采纳,获得10
5秒前
迟大猫应助简单的银耳汤采纳,获得10
5秒前
Owen应助LJL采纳,获得10
5秒前
6秒前
cwn完成签到,获得积分10
6秒前
zhuzhu完成签到,获得积分0
6秒前
丘比特应助彩色的蓝天采纳,获得10
6秒前
ChoccyPasta完成签到,获得积分10
7秒前
7秒前
感动的冬云完成签到,获得积分10
7秒前
嘤嘤嘤发布了新的文献求助10
8秒前
wuhaixia完成签到,获得积分10
8秒前
正版DY完成签到,获得积分10
8秒前
333发布了新的文献求助10
8秒前
醒醒发布了新的文献求助10
8秒前
xfxx发布了新的文献求助10
9秒前
Sissi完成签到 ,获得积分10
9秒前
校长完成签到,获得积分20
9秒前
尼亚吉拉完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794