Toward Automated Field Semantics Inference for Binary Protocol Reverse Engineering

计算机科学 语义学(计算机科学) 推论 领域(数学) 人工智能 背景(考古学) 协议(科学) 程序设计语言 医学 古生物学 替代医学 数学 病理 纯数学 生物
作者
Mengqi Zhan,Yang Li,Bo Li,Jinchao Zhang,Chuanrong Li,Weiping Wang
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 764-776 被引量:3
标识
DOI:10.1109/tifs.2023.3326666
摘要

Network protocol reverse engineering is the basis for many security applications. A common class of protocol reverse engineering methods is based on the analysis of network message traces. After performing message field identification by segmenting messages into multiple fields, a key task is to infer the semantics of the fields. One of the limitations of existing field semantics inference methods is that they usually infer semantics for only a few fields and often require a lot of manual effort. In this paper, we propose an automated field semantics inference method for binary protocol reverse engineering (FSIBP). FSIBP aims to automatically learn semantics inference knowledge from known protocols and use it to infer the semantics of any field of an unknown protocol. To achieve this goal, we design a feature extraction method that can extract features of the field itself and of the field context. We also propose a semantic category aggregation method that abstracts the fine-grained semantics of all fields of known protocols into aggregated semantic categories. Moreover, we make FSIBP infer semantics based on the similarity of fields to semantic categories. The above design enables FSIBP to utilize the semantic knowledge of all fields of known protocols and infer the semantics of any fields of unknown protocols. The whole process of FSIBP does not require any expert knowledge or manual parameter setting. We conduct extensive experiments to demonstrate the effectiveness of FSIBP. Moreover, we find a utility for FSIBP besides field semantics inference, its output can help to detect the mis-segmented fields generated during the message field identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
羁绊发布了新的文献求助10
4秒前
ABS发布了新的文献求助10
4秒前
金陵第一大美女完成签到,获得积分10
4秒前
善良青筠完成签到 ,获得积分10
5秒前
健康的小蝴蝶完成签到,获得积分20
7秒前
7秒前
vv完成签到,获得积分10
7秒前
8秒前
冷静的胜发布了新的文献求助10
11秒前
12秒前
wwwwj发布了新的文献求助10
12秒前
123完成签到,获得积分20
14秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
Singularity应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
汉堡包应助科研通管家采纳,获得10
15秒前
研友_89eqw8发布了新的文献求助10
17秒前
20秒前
虹虹完成签到 ,获得积分10
21秒前
香菜精发布了新的文献求助50
22秒前
23秒前
汉堡包应助安安安采纳,获得10
23秒前
缓慢的大侠完成签到,获得积分10
27秒前
Luke完成签到,获得积分10
27秒前
30秒前
你好完成签到,获得积分10
32秒前
33秒前
苹果丑应助wlywly采纳,获得50
34秒前
小邢一定行完成签到,获得积分10
34秒前
36秒前
堃堃堃完成签到 ,获得积分10
37秒前
羁绊完成签到,获得积分10
39秒前
40秒前
40秒前
40秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264457
求助须知:如何正确求助?哪些是违规求助? 2904489
关于积分的说明 8330607
捐赠科研通 2574773
什么是DOI,文献DOI怎么找? 1399398
科研通“疑难数据库(出版商)”最低求助积分说明 654484
邀请新用户注册赠送积分活动 633194