Integrated Analysis of Metabolomics Combined with Network Pharmacology and Molecular Docking Reveals the Effects of Processing on Metabolites of Dendrobium officinale

代谢组学 代谢物 石斛 化学 计算生物学 药理学 传统医学 生物 生物化学 植物 色谱法 医学
作者
Lilan Xu,Si-Min Zuo,Mei Liu,Tao Wang,Zizheng Li,Yong‐Huan Yun,Weimin Zhang
出处
期刊:Metabolites [MDPI AG]
卷期号:13 (8): 886-886 被引量:1
标识
DOI:10.3390/metabo13080886
摘要

Dendrobium officinale (D. officinale) is a precious medicinal species of Dendrobium Orchidaceae, and the product obtained by hot processing is called “Fengdou”. At present, the research on the processing quality of D. officinale mainly focuses on the chemical composition indicators such as polysaccharides and flavonoids content. However, the changes in metabolites during D. officinale processing are still unclear. In this study, the process was divided into two stages and three important conditions including fresh stems, semiproducts and “Fengdou” products. To investigate the effect of processing on metabolites of D. officinale in different processing stages, an approach of combining metabolomics with network pharmacology and molecular docking was employed. Through UPLC-MS/MS analysis, a total of 628 metabolites were detected, and 109 of them were identified as differential metabolites (VIP ≥ 1, |log2 (FC)| ≥ 1). Next, the differential metabolites were analyzed using the network pharmacology method, resulting in the selection of 29 differential metabolites as they have a potential pharmacological activity. Combining seven diseases, 14 key metabolites and nine important targets were screened by constructing a metabolite–target–disease network. The results showed that seven metabolites with potential anticoagulant, hypoglycemic and tumor-inhibiting activities increased in relative abundance in the “Fengdou” product. Molecular docking results indicated that seven metabolites may act on five important targets. In general, processing can increase the content of some active metabolites of D. officinale and improve its medicinal quality to a certain extent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萧暖发布了新的文献求助10
刚刚
留胡子的书桃完成签到 ,获得积分10
刚刚
1秒前
1秒前
传奇3应助翻翻CHEN采纳,获得10
2秒前
3秒前
KK关注了科研通微信公众号
4秒前
小西发布了新的文献求助10
4秒前
wanci应助蛋炒饭不加蛋采纳,获得10
4秒前
沉静的函发布了新的文献求助10
5秒前
Sprinkle完成签到,获得积分10
5秒前
cookie发布了新的文献求助10
6秒前
JamesPei应助露露采纳,获得10
6秒前
VV发布了新的文献求助10
6秒前
sugarxy应助Strike采纳,获得150
7秒前
酷波er应助gdh采纳,获得10
7秒前
AlexLam完成签到,获得积分10
8秒前
eLiauK发布了新的文献求助10
9秒前
9秒前
9秒前
11秒前
谦让小咖啡完成签到 ,获得积分10
12秒前
12秒前
TURBO发布了新的文献求助10
12秒前
丘比特应助流水不腐采纳,获得10
12秒前
13秒前
13秒前
lmy完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
PSCs发布了新的文献求助10
14秒前
苗条月光发布了新的文献求助10
16秒前
SWW完成签到 ,获得积分10
16秒前
Mr.D完成签到,获得积分20
17秒前
翻翻CHEN发布了新的文献求助10
17秒前
17秒前
ldd发布了新的文献求助10
18秒前
gdh发布了新的文献求助10
19秒前
19秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124688
求助须知:如何正确求助?哪些是违规求助? 2775052
关于积分的说明 7725125
捐赠科研通 2430553
什么是DOI,文献DOI怎么找? 1291228
科研通“疑难数据库(出版商)”最低求助积分说明 622091
版权声明 600323