Advanced strategies for modifying the water splitting performance of MoSe2 photocatalyst: A critical review of recent progress

光催化 分解水 光催化分解水 材料科学 纳米技术 半导体 异质结 纳米结构 制氢 带隙 剥脱关节 催化作用 光电子学 化学 石墨烯 生物化学
作者
Vaishnavi Sharma,Abhinandan Kumar,Pardeep Singh,Praveen Kumar Verma,Tansir Ahamad,Sourbh Thakur,Quyet Van Le,Van‐Huy Nguyen,Aftab Aslam Parwaz Khan,Pankaj Raizada
出处
期刊:Journal of Industrial and Engineering Chemistry [Elsevier BV]
卷期号:128: 55-65 被引量:6
标识
DOI:10.1016/j.jiec.2023.07.056
摘要

Water splitting technology is rapidly evolving in order to generate H2 in a sustainable manner to amend the global energy crisis. Water splitting over semiconductor catalyst nanoparticles for large-scale hydrogen production has shown to be a simple and affordable procedure, attracting researchers from around the world for more fruitful studies and development in the field of photocatalysis. In this respect, MoSe2 is a promising semiconductor photocatalyst owing to its non-toxic nature, low Gibbs free energy, high metallic character, impressive opto-electronic properties, and outstanding photocatalytic performance. Moreover, the 2D nature of MoSe2 allows the easy tuning of the bandgap to suit H2 evolution reaction application by simple synthesis techniques. Therefore, in this review, we have comprehensively discussed the influence of morphology on photocatalytic water splitting with a main focus on the nanostructure modifications to modulate the properties of MoSe2. In detail, starting from the crystal structure and optimal photocatalytic features of MoSe2, insights into photocatalytic water splitting have been highlighted. Various modes of nanostructure designs involving hydro(solvo)thermal, CVD, PVD, exfoliation, and intercalation are outlined. The lower bandgap energy is subjected to a high rate of photoinduced excitons recombination, which reduces its photocatalytic efficiency. Therefore, modification techniques such as doping, heterostructure construction, and vacancy generation are presented in order to concurrently improve the photocatalytic water splitting performance. Finally, the study concludes with a summary of recent advancements and anticipated potential trends in this area to instigate further research endeavours.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
7秒前
uwu发布了新的文献求助10
8秒前
科研通AI2S应助张张采纳,获得10
8秒前
SAY完成签到,获得积分10
9秒前
陈锦辞发布了新的文献求助10
10秒前
Singularity应助科研通管家采纳,获得20
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
Leon应助科研通管家采纳,获得20
12秒前
12秒前
12秒前
李健应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
阿修罗完成签到,获得积分10
14秒前
15秒前
uwu完成签到,获得积分10
15秒前
anyone完成签到,获得积分20
16秒前
搜集达人应助Placa采纳,获得10
16秒前
kdqiu完成签到,获得积分10
16秒前
大方的觅海完成签到,获得积分10
17秒前
莉莉芙完成签到 ,获得积分10
18秒前
小猴发布了新的文献求助10
18秒前
20秒前
21秒前
清爽的凤完成签到,获得积分10
21秒前
23秒前
枳花完成签到,获得积分10
23秒前
23秒前
张张发布了新的文献求助10
25秒前
25秒前
在水一方应助yulx001采纳,获得10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673700
求助须知:如何正确求助?哪些是违规求助? 3229193
关于积分的说明 9784567
捐赠科研通 2939761
什么是DOI,文献DOI怎么找? 1611313
邀请新用户注册赠送积分活动 760896
科研通“疑难数据库(出版商)”最低求助积分说明 736326