亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unrolled and rapid motion-compensated reconstruction for cardiac CINE MRI

计算机科学 人工智能 运动估计 计算机视觉 运动(物理) 迭代重建 加速度 过程(计算) 由运动产生的结构 物理 经典力学 操作系统
作者
Jiazhen Pan,Manal Hamdi,Wenqi Huang,Kerstin Hammernik,Thomas Kuestner,Daniel Rueckert
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:91: 103017-103017 被引量:3
标识
DOI:10.1016/j.media.2023.103017
摘要

In recent years Motion-Compensated MR reconstruction (MCMR) has emerged as a promising approach for cardiac MR (CMR) imaging reconstruction. MCMR estimates cardiac motion and incorporates this information in the reconstruction. However, two obstacles prevent the practical use of MCMR in clinical situations: First, inaccurate motion estimation often leads to inferior CMR reconstruction results. Second, the motion estimation frequently leads to a long processing time for the reconstruction. In this work, we propose a learning-based and unrolled MCMR framework that can perform precise and rapid CMR reconstruction. We achieve accurate reconstruction by developing a joint optimization between the motion estimation and reconstruction, in which a deep learning-based motion estimation framework is unrolled within an iterative optimization procedure. With progressive iterations, a mutually beneficial interaction can be established in which the reconstruction quality is improved with more accurate motion estimation. Further, we propose a groupwise motion estimation framework to speed up the MCMR process. A registration template based on the cardiac sequence average is introduced, while the motion estimation is conducted between the cardiac frames and the template. By applying this framework, cardiac sequence registration can be accomplished with linear time complexity. Experiments on 43 in-house acquired 2D CINE datasets indicate that the proposed unrolled MCMR framework can deliver artifacts-free motion estimation and high-quality CMR reconstruction even for imaging acceleration rates up to 20x. We compare our approach with state-of-the-art reconstruction methods and it outperforms them quantitatively and qualitatively in all adapted metrics across all acceleration rates.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
风景园林发布了新的文献求助10
9秒前
SciGPT应助XX采纳,获得10
11秒前
世良发布了新的文献求助10
11秒前
嘤嘤怪完成签到,获得积分10
15秒前
Criminology34应助科研通管家采纳,获得10
15秒前
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
ceeray23应助科研通管家采纳,获得10
15秒前
elliotzzz应助科研通管家采纳,获得10
15秒前
Criminology34应助科研通管家采纳,获得10
15秒前
Criminology34应助科研通管家采纳,获得10
15秒前
16秒前
28秒前
zh发布了新的文献求助10
32秒前
42秒前
真实的瑾瑜完成签到 ,获得积分10
46秒前
YNHN发布了新的文献求助10
47秒前
茄子完成签到,获得积分10
54秒前
科研通AI6应助YNHN采纳,获得10
55秒前
科研通AI6应助喷火球采纳,获得10
1分钟前
传奇3应助茄子采纳,获得10
1分钟前
VDC发布了新的文献求助10
1分钟前
田様应助浪里白条采纳,获得10
1分钟前
1分钟前
1分钟前
科研小新发布了新的文献求助10
1分钟前
小圆发布了新的文献求助10
1分钟前
1分钟前
李爱国应助科研小新采纳,获得10
1分钟前
Amber发布了新的文献求助10
1分钟前
1分钟前
2分钟前
月月发布了新的文献求助10
2分钟前
Anlocia完成签到 ,获得积分10
2分钟前
XX发布了新的文献求助10
2分钟前
ktw完成签到,获得积分10
2分钟前
Youy完成签到 ,获得积分10
2分钟前
小池完成签到,获得积分10
2分钟前
世良发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650695
求助须知:如何正确求助?哪些是违规求助? 4781473
关于积分的说明 15052510
捐赠科研通 4809531
什么是DOI,文献DOI怎么找? 2572352
邀请新用户注册赠送积分活动 1528481
关于科研通互助平台的介绍 1487362