Unrolled and rapid motion-compensated reconstruction for cardiac CINE MRI

计算机科学 人工智能 运动估计 计算机视觉 运动(物理) 迭代重建 加速度 过程(计算) 由运动产生的结构 物理 经典力学 操作系统
作者
Jiazhen Pan,Manal Hamdi,Wenqi Huang,Kerstin Hammernik,Thomas Kuestner,Daniel Rueckert
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:91: 103017-103017 被引量:3
标识
DOI:10.1016/j.media.2023.103017
摘要

In recent years Motion-Compensated MR reconstruction (MCMR) has emerged as a promising approach for cardiac MR (CMR) imaging reconstruction. MCMR estimates cardiac motion and incorporates this information in the reconstruction. However, two obstacles prevent the practical use of MCMR in clinical situations: First, inaccurate motion estimation often leads to inferior CMR reconstruction results. Second, the motion estimation frequently leads to a long processing time for the reconstruction. In this work, we propose a learning-based and unrolled MCMR framework that can perform precise and rapid CMR reconstruction. We achieve accurate reconstruction by developing a joint optimization between the motion estimation and reconstruction, in which a deep learning-based motion estimation framework is unrolled within an iterative optimization procedure. With progressive iterations, a mutually beneficial interaction can be established in which the reconstruction quality is improved with more accurate motion estimation. Further, we propose a groupwise motion estimation framework to speed up the MCMR process. A registration template based on the cardiac sequence average is introduced, while the motion estimation is conducted between the cardiac frames and the template. By applying this framework, cardiac sequence registration can be accomplished with linear time complexity. Experiments on 43 in-house acquired 2D CINE datasets indicate that the proposed unrolled MCMR framework can deliver artifacts-free motion estimation and high-quality CMR reconstruction even for imaging acceleration rates up to 20x. We compare our approach with state-of-the-art reconstruction methods and it outperforms them quantitatively and qualitatively in all adapted metrics across all acceleration rates.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sqf1209完成签到,获得积分10
1秒前
花生完成签到,获得积分10
2秒前
YHX完成签到,获得积分10
2秒前
开朗的一德完成签到,获得积分10
3秒前
3秒前
wwpapple完成签到,获得积分10
4秒前
朴素的友菱完成签到,获得积分10
4秒前
米雪儿完成签到,获得积分10
4秒前
6秒前
谢焯州完成签到,获得积分10
6秒前
arniu2008发布了新的文献求助10
8秒前
加肥狗完成签到,获得积分10
8秒前
火山暴涨球技完成签到,获得积分10
8秒前
高贵花瓣完成签到,获得积分10
9秒前
小白完成签到,获得积分10
9秒前
9秒前
lanxinge完成签到 ,获得积分10
9秒前
风中故事发布了新的文献求助10
10秒前
zero完成签到,获得积分10
10秒前
tianlongli发布了新的文献求助10
10秒前
jingchengke完成签到,获得积分10
10秒前
10秒前
奇趣糖完成签到,获得积分10
10秒前
YOLO完成签到 ,获得积分10
10秒前
Alex完成签到 ,获得积分10
11秒前
等待冰之完成签到 ,获得积分10
11秒前
Orange应助舒适千儿采纳,获得10
11秒前
11秒前
桐桐应助gzmejiji采纳,获得10
12秒前
某某某完成签到,获得积分10
12秒前
12秒前
johnny完成签到,获得积分10
12秒前
耍酷的白山完成签到,获得积分10
12秒前
Summer完成签到 ,获得积分10
13秒前
潦草小狗完成签到 ,获得积分10
13秒前
美满的凝丝完成签到,获得积分10
13秒前
华仔应助桃子采纳,获得10
13秒前
优秀扬完成签到,获得积分10
13秒前
13秒前
usokb发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568370
求助须知:如何正确求助?哪些是违规求助? 4652947
关于积分的说明 14702495
捐赠科研通 4594744
什么是DOI,文献DOI怎么找? 2521254
邀请新用户注册赠送积分活动 1492932
关于科研通互助平台的介绍 1463734