Unrolled and rapid motion-compensated reconstruction for cardiac CINE MRI

计算机科学 人工智能 运动估计 计算机视觉 运动(物理) 迭代重建 加速度 过程(计算) 由运动产生的结构 物理 经典力学 操作系统
作者
Jiazhen Pan,Manal Hamdi,Wenqi Huang,Kerstin Hammernik,Thomas Kuestner,Daniel Rueckert
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:91: 103017-103017 被引量:3
标识
DOI:10.1016/j.media.2023.103017
摘要

In recent years Motion-Compensated MR reconstruction (MCMR) has emerged as a promising approach for cardiac MR (CMR) imaging reconstruction. MCMR estimates cardiac motion and incorporates this information in the reconstruction. However, two obstacles prevent the practical use of MCMR in clinical situations: First, inaccurate motion estimation often leads to inferior CMR reconstruction results. Second, the motion estimation frequently leads to a long processing time for the reconstruction. In this work, we propose a learning-based and unrolled MCMR framework that can perform precise and rapid CMR reconstruction. We achieve accurate reconstruction by developing a joint optimization between the motion estimation and reconstruction, in which a deep learning-based motion estimation framework is unrolled within an iterative optimization procedure. With progressive iterations, a mutually beneficial interaction can be established in which the reconstruction quality is improved with more accurate motion estimation. Further, we propose a groupwise motion estimation framework to speed up the MCMR process. A registration template based on the cardiac sequence average is introduced, while the motion estimation is conducted between the cardiac frames and the template. By applying this framework, cardiac sequence registration can be accomplished with linear time complexity. Experiments on 43 in-house acquired 2D CINE datasets indicate that the proposed unrolled MCMR framework can deliver artifacts-free motion estimation and high-quality CMR reconstruction even for imaging acceleration rates up to 20x. We compare our approach with state-of-the-art reconstruction methods and it outperforms them quantitatively and qualitatively in all adapted metrics across all acceleration rates.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JeromineJade发布了新的文献求助10
1秒前
明亮西牛完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
Lim259发布了新的文献求助10
4秒前
4秒前
科研通AI6.1应助可爱丸子采纳,获得10
4秒前
4秒前
Orange应助激昂的钥匙采纳,获得10
5秒前
orixero应助nanonamo采纳,获得10
6秒前
6秒前
7秒前
balmy完成签到 ,获得积分10
7秒前
wanci应助等等采纳,获得10
7秒前
7秒前
粉蒸肉发布了新的文献求助30
7秒前
Criminology34应助cc采纳,获得10
8秒前
9秒前
11秒前
小王小王完成签到 ,获得积分10
11秒前
直菱完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
pbj发布了新的文献求助10
12秒前
12秒前
TiAmo完成签到,获得积分10
12秒前
13秒前
lxdfrank发布了新的文献求助10
13秒前
16秒前
balko发布了新的文献求助10
16秒前
卓卓完成签到,获得积分10
16秒前
沙心发布了新的文献求助10
17秒前
17秒前
咩咩发布了新的文献求助10
17秒前
17秒前
Adonis完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
mm完成签到 ,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771462
求助须知:如何正确求助?哪些是违规求助? 5591687
关于积分的说明 15427521
捐赠科研通 4904775
什么是DOI,文献DOI怎么找? 2638990
邀请新用户注册赠送积分活动 1586782
关于科研通互助平台的介绍 1541792