Unrolled and rapid motion-compensated reconstruction for cardiac CINE MRI

计算机科学 人工智能 运动估计 计算机视觉 运动(物理) 迭代重建 加速度 过程(计算) 由运动产生的结构 物理 经典力学 操作系统
作者
Jiazhen Pan,Manal Hamdi,Wenqi Huang,Kerstin Hammernik,Thomas Kuestner,Daniel Rueckert
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:91: 103017-103017 被引量:3
标识
DOI:10.1016/j.media.2023.103017
摘要

In recent years Motion-Compensated MR reconstruction (MCMR) has emerged as a promising approach for cardiac MR (CMR) imaging reconstruction. MCMR estimates cardiac motion and incorporates this information in the reconstruction. However, two obstacles prevent the practical use of MCMR in clinical situations: First, inaccurate motion estimation often leads to inferior CMR reconstruction results. Second, the motion estimation frequently leads to a long processing time for the reconstruction. In this work, we propose a learning-based and unrolled MCMR framework that can perform precise and rapid CMR reconstruction. We achieve accurate reconstruction by developing a joint optimization between the motion estimation and reconstruction, in which a deep learning-based motion estimation framework is unrolled within an iterative optimization procedure. With progressive iterations, a mutually beneficial interaction can be established in which the reconstruction quality is improved with more accurate motion estimation. Further, we propose a groupwise motion estimation framework to speed up the MCMR process. A registration template based on the cardiac sequence average is introduced, while the motion estimation is conducted between the cardiac frames and the template. By applying this framework, cardiac sequence registration can be accomplished with linear time complexity. Experiments on 43 in-house acquired 2D CINE datasets indicate that the proposed unrolled MCMR framework can deliver artifacts-free motion estimation and high-quality CMR reconstruction even for imaging acceleration rates up to 20x. We compare our approach with state-of-the-art reconstruction methods and it outperforms them quantitatively and qualitatively in all adapted metrics across all acceleration rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
美好幻灵发布了新的文献求助10
1秒前
1秒前
1秒前
碧松桥完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
呆毛王发布了新的文献求助10
2秒前
仰望星空应助xiaoxiao1992采纳,获得10
2秒前
一群牛发布了新的文献求助10
3秒前
XRWei发布了新的文献求助10
3秒前
科研通AI6应助Wangxuexin采纳,获得10
3秒前
阿晴发布了新的文献求助10
3秒前
4秒前
花花发布了新的文献求助30
4秒前
Lucas应助qianqina采纳,获得10
5秒前
6秒前
顾矜应助博思好行采纳,获得10
6秒前
6秒前
上官若男应助迷你的依凝采纳,获得10
6秒前
6秒前
6秒前
Faye完成签到 ,获得积分10
7秒前
zhaoshuo发布了新的文献求助10
7秒前
慕青应助一年5篇采纳,获得10
8秒前
8秒前
自觉水绿发布了新的文献求助10
8秒前
雨寒完成签到,获得积分10
9秒前
xixi发布了新的文献求助10
9秒前
赵科翊完成签到,获得积分10
9秒前
Breathe完成签到 ,获得积分10
10秒前
Jessie完成签到,获得积分10
10秒前
liucheng发布了新的文献求助30
11秒前
11秒前
11秒前
11秒前
HI发布了新的文献求助10
12秒前
12秒前
qianqina完成签到,获得积分10
12秒前
好好好完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403