A Segmentation Framework With Unsupervised Learning-Based Label Mapper for the Ventricular Target of Intracranial Germ Cell Tumor

分割 计算机科学 条件随机场 人工智能 体素 放射治疗 生殖细胞肿瘤 心室 图像分割 计算机视觉 医学 放射科 内科学 化疗
作者
Xianyu Wang,Shuai Liu,Ne Yang,Fang Chen,Longfei Ma,Guochen Ning,Hui Zhang,Xiaoguang Qiu,Hongen Liao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (11): 5381-5392
标识
DOI:10.1109/jbhi.2023.3310492
摘要

Intracranial germ cell tumors are rare tumors that mainly affect children and adolescents. Radiotherapy is the cornerstone of interdisciplinary treatment methods. Radiation of the whole ventricle system and the local tumor can reduce the complications in the late stage of radiotherapy while ensuring the curative effect. However, manually delineating the ventricular system is labor-intensive and time-consuming for physicians. The diverse ventricle shape and the hydrocephalus-induced ventricle dilation increase the difficulty of automatic segmentation algorithms. Therefore, this study proposed a fully automatic segmentation framework. Firstly, we designed a novel unsupervised learning-based label mapper, which is used to handle the ventricle shape variations and obtain the preliminary segmentation result. Then, to boost the segmentation performance of the framework, we improved the region growth algorithm and combined the fully connected conditional random field to optimize the preliminary results from both regional and voxel scales. In the case of only one set of annotated data is required, the average time cost is 153.01 s, and the average target segmentation accuracy can reach 84.69%. Furthermore, we verified the algorithm in practical clinical applications. The results demonstrate that our proposed method is beneficial for physicians to delineate radiotherapy targets, which is feasible and clinically practical, and may fill the gap of automatic delineation methods for the ventricular target of intracranial germ celltumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助陶醉的念之采纳,获得10
刚刚
阿司匹林完成签到,获得积分10
刚刚
刻苦惊蛰完成签到 ,获得积分10
刚刚
还没想好发布了新的文献求助10
刚刚
熊熊完成签到 ,获得积分20
刚刚
1秒前
SS1988完成签到 ,获得积分20
1秒前
2秒前
3秒前
小牧鱼完成签到,获得积分10
3秒前
4秒前
柯夫子完成签到,获得积分10
4秒前
hanghang完成签到,获得积分10
4秒前
轩扬发布了新的文献求助10
5秒前
传奇3应助璇22采纳,获得10
6秒前
yuan发布了新的文献求助10
6秒前
Hawk_shuo发布了新的文献求助30
8秒前
1364135702发布了新的文献求助10
8秒前
豆豆完成签到,获得积分10
8秒前
机智双双应助Luos采纳,获得10
10秒前
烟花应助子车雁开采纳,获得10
11秒前
wanfeng完成签到 ,获得积分10
13秒前
15秒前
酷波er应助P_Zh_CN采纳,获得10
15秒前
Kelvin.Tsi完成签到 ,获得积分10
16秒前
17秒前
18秒前
所所应助学术小白采纳,获得10
18秒前
嘻嘻嘻完成签到,获得积分10
19秒前
yongji完成签到,获得积分10
21秒前
璇22发布了新的文献求助10
22秒前
22秒前
玻璃外的世界完成签到,获得积分10
22秒前
还没想好完成签到,获得积分10
22秒前
汉堡包应助lyl采纳,获得10
23秒前
24秒前
24秒前
Ava应助高兴的香薇采纳,获得10
26秒前
26秒前
zzyh完成签到,获得积分10
26秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267073
求助须知:如何正确求助?哪些是违规求助? 2906635
关于积分的说明 8338863
捐赠科研通 2577218
什么是DOI,文献DOI怎么找? 1400798
科研通“疑难数据库(出版商)”最低求助积分说明 654973
邀请新用户注册赠送积分活动 633866