A Segmentation Framework With Unsupervised Learning-Based Label Mapper for the Ventricular Target of Intracranial Germ Cell Tumor

分割 计算机科学 条件随机场 人工智能 体素 放射治疗 生殖细胞肿瘤 心室 图像分割 计算机视觉 医学 放射科 内科学 化疗
作者
Xianyu Wang,Shuai Liu,Ne Yang,Fang Chen,Longfei Ma,Guochen Ning,Hui Zhang,Xiaoguang Qiu,Hongen Liao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (11): 5381-5392
标识
DOI:10.1109/jbhi.2023.3310492
摘要

Intracranial germ cell tumors are rare tumors that mainly affect children and adolescents. Radiotherapy is the cornerstone of interdisciplinary treatment methods. Radiation of the whole ventricle system and the local tumor can reduce the complications in the late stage of radiotherapy while ensuring the curative effect. However, manually delineating the ventricular system is labor-intensive and time-consuming for physicians. The diverse ventricle shape and the hydrocephalus-induced ventricle dilation increase the difficulty of automatic segmentation algorithms. Therefore, this study proposed a fully automatic segmentation framework. Firstly, we designed a novel unsupervised learning-based label mapper, which is used to handle the ventricle shape variations and obtain the preliminary segmentation result. Then, to boost the segmentation performance of the framework, we improved the region growth algorithm and combined the fully connected conditional random field to optimize the preliminary results from both regional and voxel scales. In the case of only one set of annotated data is required, the average time cost is 153.01 s, and the average target segmentation accuracy can reach 84.69%. Furthermore, we verified the algorithm in practical clinical applications. The results demonstrate that our proposed method is beneficial for physicians to delineate radiotherapy targets, which is feasible and clinically practical, and may fill the gap of automatic delineation methods for the ventricular target of intracranial germ celltumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李志远完成签到,获得积分10
刚刚
ghh发布了新的文献求助10
刚刚
1秒前
77paocai完成签到,获得积分10
2秒前
CCL完成签到,获得积分10
3秒前
明亮的绫完成签到 ,获得积分10
3秒前
祖诗云完成签到,获得积分0
4秒前
jiewen发布了新的文献求助10
6秒前
6秒前
Oz完成签到,获得积分10
6秒前
zhukun发布了新的文献求助10
7秒前
7秒前
10秒前
香蕉觅云应助oliver501采纳,获得10
10秒前
正经俠完成签到 ,获得积分20
11秒前
YY完成签到 ,获得积分10
12秒前
清秀灵薇发布了新的文献求助10
12秒前
LZL完成签到 ,获得积分10
12秒前
油焖青椒完成签到,获得积分10
12秒前
不会学术的羊完成签到,获得积分10
13秒前
13秒前
lio完成签到,获得积分20
14秒前
14秒前
FashionBoy应助汤浩宏采纳,获得10
15秒前
wjwless完成签到,获得积分10
16秒前
稀罕你发布了新的文献求助10
16秒前
圣晟胜发布了新的文献求助10
16秒前
寒冷半雪完成签到,获得积分10
20秒前
善良易文发布了新的文献求助10
20秒前
orixero应助GXY采纳,获得30
20秒前
香蕉不言发布了新的文献求助10
20秒前
迅速海云发布了新的文献求助10
21秒前
xiamovivi完成签到,获得积分10
22秒前
bitahu完成签到,获得积分20
22秒前
路边一颗小草完成签到,获得积分10
22秒前
23秒前
23秒前
23秒前
乐乐应助勤劳落雁采纳,获得30
24秒前
天天快乐应助科研通管家采纳,获得10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849