重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

A Segmentation Framework With Unsupervised Learning-Based Label Mapper for the Ventricular Target of Intracranial Germ Cell Tumor

分割 计算机科学 条件随机场 人工智能 体素 放射治疗 生殖细胞肿瘤 心室 图像分割 计算机视觉 医学 放射科 内科学 化疗
作者
Xianyu Wang,Shuai Liu,Ne Yang,Fang Chen,Longfei Ma,Guochen Ning,Hui Zhang,Xiaoguang Qiu,Hongen Liao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (11): 5381-5392
标识
DOI:10.1109/jbhi.2023.3310492
摘要

Intracranial germ cell tumors are rare tumors that mainly affect children and adolescents. Radiotherapy is the cornerstone of interdisciplinary treatment methods. Radiation of the whole ventricle system and the local tumor can reduce the complications in the late stage of radiotherapy while ensuring the curative effect. However, manually delineating the ventricular system is labor-intensive and time-consuming for physicians. The diverse ventricle shape and the hydrocephalus-induced ventricle dilation increase the difficulty of automatic segmentation algorithms. Therefore, this study proposed a fully automatic segmentation framework. Firstly, we designed a novel unsupervised learning-based label mapper, which is used to handle the ventricle shape variations and obtain the preliminary segmentation result. Then, to boost the segmentation performance of the framework, we improved the region growth algorithm and combined the fully connected conditional random field to optimize the preliminary results from both regional and voxel scales. In the case of only one set of annotated data is required, the average time cost is 153.01 s, and the average target segmentation accuracy can reach 84.69%. Furthermore, we verified the algorithm in practical clinical applications. The results demonstrate that our proposed method is beneficial for physicians to delineate radiotherapy targets, which is feasible and clinically practical, and may fill the gap of automatic delineation methods for the ventricular target of intracranial germ celltumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
安成完成签到,获得积分20
2秒前
2秒前
2秒前
lijing3026给lijing3026的求助进行了留言
2秒前
子车茗应助糙糙科研采纳,获得30
3秒前
zsl完成签到 ,获得积分10
3秒前
qprcddd完成签到,获得积分10
4秒前
俏皮幻悲发布了新的文献求助10
4秒前
大力方盒发布了新的文献求助10
4秒前
Balance Man发布了新的文献求助10
4秒前
4秒前
vivi完成签到,获得积分0
4秒前
帅帅完成签到,获得积分10
4秒前
kiki发布了新的文献求助10
5秒前
阳光完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
现代的澜发布了新的文献求助10
6秒前
爆米花应助默己采纳,获得10
6秒前
小李发布了新的文献求助30
6秒前
ding应助默己采纳,获得10
6秒前
小二郎应助默己采纳,获得10
6秒前
烟花应助默己采纳,获得10
6秒前
ding应助默己采纳,获得10
6秒前
传奇3应助默己采纳,获得10
6秒前
乐乐应助默己采纳,获得10
6秒前
6秒前
小马甲应助默己采纳,获得10
6秒前
CodeCraft应助失眠呆呆鱼采纳,获得20
7秒前
8秒前
8秒前
8秒前
8秒前
9秒前
搜集达人应助谨慎乐安采纳,获得80
10秒前
科研通AI2S应助苏莉婷采纳,获得10
10秒前
10秒前
科研通AI2S应助霜糖采纳,获得10
11秒前
Sau1完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466189
求助须知:如何正确求助?哪些是违规求助? 4570151
关于积分的说明 14323225
捐赠科研通 4496641
什么是DOI,文献DOI怎么找? 2463456
邀请新用户注册赠送积分活动 1452353
关于科研通互助平台的介绍 1427516