A Segmentation Framework With Unsupervised Learning-Based Label Mapper for the Ventricular Target of Intracranial Germ Cell Tumor

分割 计算机科学 条件随机场 人工智能 体素 放射治疗 生殖细胞肿瘤 心室 图像分割 计算机视觉 医学 放射科 内科学 化疗
作者
Xianyu Wang,Shuai Liu,Ne Yang,Fang Chen,Longfei Ma,Guochen Ning,Hui Zhang,Xiaoguang Qiu,Hongen Liao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (11): 5381-5392
标识
DOI:10.1109/jbhi.2023.3310492
摘要

Intracranial germ cell tumors are rare tumors that mainly affect children and adolescents. Radiotherapy is the cornerstone of interdisciplinary treatment methods. Radiation of the whole ventricle system and the local tumor can reduce the complications in the late stage of radiotherapy while ensuring the curative effect. However, manually delineating the ventricular system is labor-intensive and time-consuming for physicians. The diverse ventricle shape and the hydrocephalus-induced ventricle dilation increase the difficulty of automatic segmentation algorithms. Therefore, this study proposed a fully automatic segmentation framework. Firstly, we designed a novel unsupervised learning-based label mapper, which is used to handle the ventricle shape variations and obtain the preliminary segmentation result. Then, to boost the segmentation performance of the framework, we improved the region growth algorithm and combined the fully connected conditional random field to optimize the preliminary results from both regional and voxel scales. In the case of only one set of annotated data is required, the average time cost is 153.01 s, and the average target segmentation accuracy can reach 84.69%. Furthermore, we verified the algorithm in practical clinical applications. The results demonstrate that our proposed method is beneficial for physicians to delineate radiotherapy targets, which is feasible and clinically practical, and may fill the gap of automatic delineation methods for the ventricular target of intracranial germ celltumors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
勤劳的白晴完成签到,获得积分10
刚刚
刚刚
霸气凡白发布了新的文献求助10
刚刚
完美世界应助喜欢朝雪采纳,获得10
刚刚
1秒前
1秒前
JianDan发布了新的文献求助10
1秒前
对手完成签到 ,获得积分10
1秒前
1秒前
1秒前
飞翔的霸天哥应助carl采纳,获得30
2秒前
frozensun应助David采纳,获得10
2秒前
Fiona000001发布了新的文献求助10
2秒前
完美世界应助闯关的KiKi采纳,获得10
3秒前
幸福的绿海完成签到,获得积分10
3秒前
顾矜应助yzy采纳,获得10
3秒前
3秒前
42421018关注了科研通微信公众号
3秒前
勤恳洙完成签到,获得积分10
3秒前
LYDZ2发布了新的文献求助10
4秒前
4秒前
无限大山完成签到,获得积分10
4秒前
ZhihaoYang发布了新的文献求助10
4秒前
酷酷水壶发布了新的文献求助10
5秒前
5秒前
科研通AI6应助fu采纳,获得10
5秒前
hhwoyebudong发布了新的文献求助10
6秒前
6秒前
36456657应助淼淼采纳,获得10
6秒前
猪猪hero发布了新的文献求助10
7秒前
7秒前
wrrop发布了新的文献求助10
7秒前
lab完成签到 ,获得积分10
7秒前
Dr.Paper发布了新的文献求助10
7秒前
8秒前
bjbmtxy应助勤奋的冬萱采纳,获得10
8秒前
找不着北完成签到,获得积分10
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519632
求助须知:如何正确求助?哪些是违规求助? 4611732
关于积分的说明 14529813
捐赠科研通 4549100
什么是DOI,文献DOI怎么找? 2492759
邀请新用户注册赠送积分活动 1473857
关于科研通互助平台的介绍 1445710