A Segmentation Framework With Unsupervised Learning-Based Label Mapper for the Ventricular Target of Intracranial Germ Cell Tumor

分割 计算机科学 条件随机场 人工智能 体素 放射治疗 生殖细胞肿瘤 心室 图像分割 计算机视觉 医学 放射科 内科学 化疗
作者
Xianyu Wang,Shuai Liu,Ne Yang,Fang Chen,Longfei Ma,Guochen Ning,Hui Zhang,Xiaoguang Qiu,Hongen Liao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (11): 5381-5392
标识
DOI:10.1109/jbhi.2023.3310492
摘要

Intracranial germ cell tumors are rare tumors that mainly affect children and adolescents. Radiotherapy is the cornerstone of interdisciplinary treatment methods. Radiation of the whole ventricle system and the local tumor can reduce the complications in the late stage of radiotherapy while ensuring the curative effect. However, manually delineating the ventricular system is labor-intensive and time-consuming for physicians. The diverse ventricle shape and the hydrocephalus-induced ventricle dilation increase the difficulty of automatic segmentation algorithms. Therefore, this study proposed a fully automatic segmentation framework. Firstly, we designed a novel unsupervised learning-based label mapper, which is used to handle the ventricle shape variations and obtain the preliminary segmentation result. Then, to boost the segmentation performance of the framework, we improved the region growth algorithm and combined the fully connected conditional random field to optimize the preliminary results from both regional and voxel scales. In the case of only one set of annotated data is required, the average time cost is 153.01 s, and the average target segmentation accuracy can reach 84.69%. Furthermore, we verified the algorithm in practical clinical applications. The results demonstrate that our proposed method is beneficial for physicians to delineate radiotherapy targets, which is feasible and clinically practical, and may fill the gap of automatic delineation methods for the ventricular target of intracranial germ celltumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jack完成签到,获得积分10
1秒前
1秒前
1秒前
鞘皮发布了新的文献求助20
1秒前
活泼红牛发布了新的文献求助10
1秒前
1秒前
汉堡包应助墨西哥猪肉卷采纳,获得10
1秒前
1秒前
2秒前
芙芙完成签到,获得积分10
3秒前
MarcoPolo发布了新的文献求助10
3秒前
wangR完成签到,获得积分10
4秒前
4秒前
4秒前
yyyy发布了新的文献求助10
4秒前
夜神月完成签到 ,获得积分10
4秒前
4秒前
CodeCraft应助32采纳,获得10
5秒前
5秒前
好叭发布了新的文献求助10
5秒前
zhuzhu完成签到,获得积分10
5秒前
wxx完成签到 ,获得积分10
6秒前
宽宽发布了新的文献求助10
6秒前
lulu完成签到,获得积分20
6秒前
6秒前
7秒前
英吉利25发布了新的文献求助10
7秒前
小老头儿完成签到,获得积分10
7秒前
优美的冰巧完成签到 ,获得积分10
7秒前
7秒前
忧伤的飞鸟完成签到,获得积分10
7秒前
8秒前
nb完成签到,获得积分10
8秒前
joaei完成签到 ,获得积分10
8秒前
混沌完成签到,获得积分10
8秒前
08x关闭了08x文献求助
8秒前
8秒前
8秒前
平淡的萤完成签到,获得积分10
8秒前
研友_VZG7GZ应助开朗亦绿采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396185
求助须知:如何正确求助?哪些是违规求助? 4516552
关于积分的说明 14060143
捐赠科研通 4428500
什么是DOI,文献DOI怎么找? 2432060
邀请新用户注册赠送积分活动 1424284
关于科研通互助平台的介绍 1403563