Dynamic graph construction via motif detection for stock prediction

计算机科学 盈利能力指数 库存(枪支) 图形 股票市场 数据挖掘 计量经济学 人工智能 机器学习 理论计算机科学 数学 经济 财务 地理 背景(考古学) 考古
作者
Xiang Ma,Xuemei Li,Weiming Feng,Fang Li,Caiming Zhang
出处
期刊:Information Processing and Management [Elsevier]
卷期号:60 (6): 103480-103480 被引量:2
标识
DOI:10.1016/j.ipm.2023.103480
摘要

Stock trend prediction is crucial for recommending high-investment value stocks and can strongly assist investors in making decisions. In recent years, the significance of stock relationships has been gradually recognized for trend prediction, and graph neural networks (GNNs) have been introduced to capture useful features from relationships. However, applying GNNs to stock relationship analysis still faces numerous challenges, including inappropriate distance algorithms, non-dynamic stock graphs, and over-fitting. To address these challenges, we propose a dynamic graph construction module. The module offers the following advantages: (1) A dynamic graph construction module is introduced. (2) A novel stock distance algorithm based on motif detection is proposed to reduce the distance between stocks with similar trends. (3) A dynamic graph-based LSTM is proposed to aggregate the changes in historical graphs. We have conduct numerous experiments on 4503 Chinese A-share stocks, spanning 1218 trading days. Our model demonstrates 8.65% and 1.02% relative improvements in accumulated return and accuracy, respectively. In addition, the trading simulation validates that our algorithm outperforms the state-of-the-art (SOTA) algorithms in terms of profitability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一只熊发布了新的文献求助10
刚刚
刚刚
jevon应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
Candice应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
4秒前
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
jevon应助科研通管家采纳,获得10
4秒前
手机应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
李健应助Theshiled采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
手机应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
5秒前
萌称木李完成签到,获得积分10
7秒前
7秒前
8秒前
wang完成签到,获得积分20
8秒前
14秒前
yangyang0606发布了新的文献求助10
14秒前
mouxq发布了新的文献求助10
14秒前
14秒前
15秒前
下午好完成签到 ,获得积分10
16秒前
威武醉薇关注了科研通微信公众号
20秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268226
求助须知:如何正确求助?哪些是违规求助? 2907728
关于积分的说明 8343229
捐赠科研通 2578130
什么是DOI,文献DOI怎么找? 1401698
科研通“疑难数据库(出版商)”最低求助积分说明 655151
邀请新用户注册赠送积分活动 634229