AGV robot for laser-SLAM based method testing in automated container terminal

机器人 终端(电信) 自动引导车 同时定位和映射 计算机科学 模拟 工程类 人工智能 控制工程 移动机器人 电信
作者
Ang Yang,Yu Cao,Yang Liu,Qingcheng Zeng,Fangqiang Xiu
出处
期刊:Industrial Robot-an International Journal [Emerald (MCB UP)]
卷期号:50 (6): 969-980 被引量:3
标识
DOI:10.1108/ir-04-2023-0063
摘要

Purpose Magnet spot is the primary method to develop the automated guided vehicle (AGV) guidance system for many automated container terminals (ACT). Aiming to improve the high flexibility of AGV operation in ACT, this paper aims to address the problem of technical stability leading to ACT production paralysis and propose a mini-terminal AGV robot for testing laser simultaneous location and mapping (SLAM)-based methods in ACT operation scenarios. Design/methodology/approach This study developed a physical simulation robot for terminal AGV operations, providing a platform to test technical solutions for applying laser navigation-related technologies in ACTs. Then, the terminal-AGV navigation system framework is designed to apply the laser-SLAM-based method in the physical simulation robot. Finally, the experiment is conducted in the terminal operation scenario to verify the feasibility of the proposed framework for lased-SLAM-based method testing and analyze the performance of the different mini-terminal AGV robots. Findings A series of experiments are conducted to analyze the performance of the proposed mini-terminal AGV robot for laser-SLAM-based method testing. The experimental results show the validity and effectiveness of the AGV robot and AGV navigation system framework with better local map matching, loopback and absolute positional error. Originality/value The proposed mini-terminal AGV robot and AGV navigation system framework can provide a platform for innovative laser-SLAM-based method testing in ACTs applications. Therefore, this study can effectively meet the high requirements of ACT for maturity and stability of the laser navigation technical.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
WZ0904发布了新的文献求助10
刚刚
刚刚
lab完成签到 ,获得积分0
刚刚
小蘑菇应助今今采纳,获得10
1秒前
CodeCraft应助秋之月采纳,获得10
1秒前
I1waml完成签到 ,获得积分10
1秒前
1秒前
guygun完成签到,获得积分10
1秒前
zho发布了新的文献求助10
2秒前
独特亦旋发布了新的文献求助10
2秒前
3秒前
研友_LOqqmZ完成签到,获得积分10
4秒前
4秒前
英俊的铭应助文献查找采纳,获得10
4秒前
solobang发布了新的文献求助10
4秒前
Jasper应助老迟到的书雁采纳,获得10
7秒前
orixero应助小二采纳,获得10
7秒前
8秒前
8秒前
simple完成签到,获得积分10
8秒前
caoyy发布了新的文献求助10
8秒前
赵小可可可可完成签到,获得积分10
10秒前
小萌发布了新的文献求助10
11秒前
weiv发布了新的文献求助10
11秒前
海科科发布了新的文献求助10
12秒前
陌上花完成签到,获得积分10
12秒前
我是站长才怪应助微笑襄采纳,获得10
13秒前
caoyy完成签到,获得积分10
14秒前
JamesPei应助独特亦旋采纳,获得10
15秒前
16秒前
16秒前
科目三应助Jenny采纳,获得50
18秒前
gry发布了新的文献求助10
19秒前
Hh发布了新的文献求助10
21秒前
Jzhang应助daniel采纳,获得10
21秒前
21秒前
夏夏发布了新的文献求助10
21秒前
jiesenya完成签到,获得积分10
23秒前
今后应助smile采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824