已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Visualization of concrete internal defects based on unsupervised domain adaptation algorithm for transfer learning of experiment-simulation hybrid dataset of impact echo signals

计算机科学 模式识别(心理学) 人工智能 可视化 学习迁移 时域 光谱图 小波变换 人工神经网络 无监督学习 算法 小波 计算机视觉
作者
Shang Gao,Jun Chen
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217231192058
摘要

Detecting concrete internal defects through deep learning analysis of impact echo signals faces two challenges: (1) the traditional signal processing method such as wavelet transform (WT) fails to reflect data-sensitive damage characteristics due to the uncertainty principle and (2) the limited labeled data acquired from real structures impedes network training. To address the first challenge, this paper proposes the WT-based synchrosqueezing transform (WT-SST) for the conversion of time-series data to the time-frequency spectrogram, which can provide effective features for the network in time and frequency domains simultaneously. To overcome the second challenge, numerical simulation data are supplemented for the augment of labeled data. To minimize the effect of data variance between experiments and simulations, this paper uses an unsupervised domain adaptation (DA) network for the transfer training of labeled simulation data (original domain) and unlabeled experimental data (target domain). The DA network extracts domain-invariant features by maximizing the domain recognition error and minimizing the probability distribution distance. The damage probability is calculated by the trained model to produce a 2D defect contour image of concrete specimens, and the three-dimensional visualization of internal defects by estimating the defect depth based on the defect area of contour image. Finally, the recognition precision, recall, F1-score, and accuracy of the model of unsupervised DA network trained by a hybrid dataset reaches 89.4%, 88.4%, 88.9%, and 94.7%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果笑寒完成签到,获得积分10
刚刚
2秒前
3秒前
SCT发布了新的文献求助10
3秒前
xixiii发布了新的文献求助10
3秒前
小橙完成签到 ,获得积分10
4秒前
5秒前
PPP发布了新的文献求助10
6秒前
李思发布了新的文献求助10
7秒前
TRz发布了新的文献求助10
7秒前
铃兰完成签到 ,获得积分10
7秒前
嗯哼应助我能行采纳,获得20
8秒前
An发布了新的文献求助10
10秒前
社恐科研狗完成签到,获得积分10
12秒前
holi完成签到 ,获得积分10
13秒前
干净的冷菱完成签到 ,获得积分10
23秒前
小蘑菇应助无物采纳,获得50
23秒前
tiantian发布了新的文献求助30
29秒前
干净的冷菱关注了科研通微信公众号
29秒前
科研通AI2S应助PPP采纳,获得10
30秒前
31秒前
31秒前
31秒前
31秒前
苹果柚子发布了新的文献求助10
34秒前
34秒前
无物发布了新的文献求助50
36秒前
颜哈哈发布了新的文献求助30
37秒前
11111111112发布了新的文献求助10
37秒前
郝好完成签到 ,获得积分10
40秒前
car子发布了新的文献求助30
41秒前
41秒前
丰知然应助李思采纳,获得10
44秒前
颜哈哈完成签到,获得积分10
46秒前
Tumbleweed668发布了新的文献求助10
46秒前
RR完成签到,获得积分10
50秒前
苹果柚子完成签到,获得积分10
51秒前
苏楠完成签到 ,获得积分10
52秒前
53秒前
传奇3应助刘洋采纳,获得10
55秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310963
求助须知:如何正确求助?哪些是违规求助? 2943728
关于积分的说明 8516304
捐赠科研通 2619056
什么是DOI,文献DOI怎么找? 1431863
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649755