Visualization of concrete internal defects based on unsupervised domain adaptation algorithm for transfer learning of experiment-simulation hybrid dataset of impact echo signals

计算机科学 模式识别(心理学) 人工智能 可视化 学习迁移 时域 光谱图 小波变换 人工神经网络 无监督学习 算法 小波 计算机视觉
作者
Shang Gao,Jun Chen
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217231192058
摘要

Detecting concrete internal defects through deep learning analysis of impact echo signals faces two challenges: (1) the traditional signal processing method such as wavelet transform (WT) fails to reflect data-sensitive damage characteristics due to the uncertainty principle and (2) the limited labeled data acquired from real structures impedes network training. To address the first challenge, this paper proposes the WT-based synchrosqueezing transform (WT-SST) for the conversion of time-series data to the time-frequency spectrogram, which can provide effective features for the network in time and frequency domains simultaneously. To overcome the second challenge, numerical simulation data are supplemented for the augment of labeled data. To minimize the effect of data variance between experiments and simulations, this paper uses an unsupervised domain adaptation (DA) network for the transfer training of labeled simulation data (original domain) and unlabeled experimental data (target domain). The DA network extracts domain-invariant features by maximizing the domain recognition error and minimizing the probability distribution distance. The damage probability is calculated by the trained model to produce a 2D defect contour image of concrete specimens, and the three-dimensional visualization of internal defects by estimating the defect depth based on the defect area of contour image. Finally, the recognition precision, recall, F1-score, and accuracy of the model of unsupervised DA network trained by a hybrid dataset reaches 89.4%, 88.4%, 88.9%, and 94.7%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
bin完成签到,获得积分10
3秒前
12138的9527发布了新的文献求助10
3秒前
白_发布了新的文献求助30
3秒前
FFFFcom发布了新的文献求助10
4秒前
GGbond发布了新的文献求助10
4秒前
我服有点黑完成签到,获得积分10
5秒前
整齐荟发布了新的文献求助10
5秒前
5秒前
斯文无敌完成签到,获得积分10
6秒前
123456完成签到,获得积分10
7秒前
高兴紫寒发布了新的文献求助10
8秒前
8秒前
贪玩菲音完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助150
9秒前
今后应助研友_Z1xNWn采纳,获得10
9秒前
桐桐应助豆子采纳,获得10
10秒前
hrq完成签到,获得积分10
10秒前
欣慰曼彤完成签到,获得积分10
10秒前
zyfwj完成签到,获得积分10
10秒前
10秒前
10秒前
顾矜应助斯文明杰采纳,获得10
11秒前
火星上的宫苴完成签到 ,获得积分10
12秒前
12秒前
Wirepuller完成签到,获得积分20
13秒前
高兴紫寒完成签到,获得积分10
14秒前
整齐荟完成签到,获得积分10
15秒前
yar应助cz采纳,获得10
15秒前
15秒前
15秒前
16秒前
魔幻的向松完成签到,获得积分10
17秒前
Wirepuller发布了新的文献求助10
17秒前
FashionBoy应助wangfeng007采纳,获得10
17秒前
Jason-1024发布了新的文献求助10
17秒前
long完成签到 ,获得积分10
18秒前
18秒前
CC发布了新的文献求助10
20秒前
快乐枫完成签到,获得积分20
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971277
求助须知:如何正确求助?哪些是违规求助? 3515939
关于积分的说明 11180280
捐赠科研通 3251061
什么是DOI,文献DOI怎么找? 1795664
邀请新用户注册赠送积分活动 875937
科研通“疑难数据库(出版商)”最低求助积分说明 805209