作者
Deborah Martin,Perla Alnajjar,Delphine Muselet,Claire Soligot,Hussein Kanso,Stéphane Pacaud,Yves Le Roux,Pierre‐Loïc Saaidi,Cyril Feidt
摘要
Anaerobic digestion (AD) has long been studied as an effective environmental and economic strategy for treating matrices contaminated with recalcitrant pollutants. In the present work, we investigated the bioremediation potential of AD on organic waste contaminated with chlordecone (CLD), an organochlorine pesticide extensively used in the French West Indies and classified among the most persistent organic pollutants. Digestates from animal and plant origins were supplemented with CLD and incubated under methanogenic conditions for over 40 days. The redox potential and pH monitoring showed that methanogenic conditions were preserved during the entire incubation period despite the presence of CLD. In addition, the comparison of the total biogas generated from digestates with and without CLD demonstrated no adverse effects of CLD on biogas production. For the first time, a QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) extraction method, followed by GC-MS and LC-HRMS analyses, was developed to quantify CLD and its main known transformation products (TPs) in AD experiments. A decrease in CLD concentrations was evident to a greater extent under thermophilic conditions (55 °C) compared to mesophilic conditions (37.5 °C) (CLD removal of 85 % and 42 %, respectively, after 40 days of incubation). CLD degradation was confirmed by the detection and quantification of several TPs: 10-monohydroCLD (A1), two dihydroCLDs different from 2,8-dihydroCLD (A3), pentachloroindene (B1), tetrachloroindenes (B2, B3/B4), tetra- and tri-chloroindenecarboxylic acids (C1/C2, C3/C4). Determining TPs concentrations using the QuEChERS method provided an overview of CLD fate in AD. Overall, these results reveal that AD processes can efficiently degrade CLD into several TPs from A, B, and C families while maintaining satisfactory biogas production. They pave the way to developing a scaled-up AD process capable of treating CLD-contaminated organic wastes produced by farming, thus stopping any further transfer of CLD.