沸石
挥发
灌溉
肥料
产量(工程)
环境科学
动物科学
化学
环境工程
农学
材料科学
冶金
催化作用
生物化学
生物
有机化学
作者
Qing Shan Zhao,Taotao Chen,Wang Shu,Yan Sha,Feng Zhang,Yidi Sun,Daocai Chi
标识
DOI:10.1016/j.scitotenv.2023.166279
摘要
Clinoptilolite zeolite has been widely used in agricultural production systems for enhancing water and fertilizer savings, mitigating greenhouse gas emissions, and increasing yield. However, there is little information on field-aged effects of zeolite on reactive gaseous N losses under alternate wetting and drying irrigation (AWD). We conducted a five-year field experiment to investigate field-aged effect of natural zeolite addition at 0 (Z0), 5 (Z5), and 10 (Z10) t ha-1 on reactive gaseous N losses (NH3, N2O), N-related global warming potential (GWPN), soil properties and grain yield under two irrigation regimes (CF: continuous flooding irrigation; AWD) in the 4th (2020) and 5th (2021) years since its initial application in 2017. As compared with CF, AWD did not significantly affect grain yield and NH3 volatilization but increased seasonal N2O emissions by 46 %-71 % over two years. Zeolite increased rice yield for five consecutive years. Z10 reduced averaged cumulative NH3 volatilization and GWPN by 23 % and 26 %, compared to zeolite-free treatment, respectively, in the 4th and 5th years. Soil NH4+-N was increased with the increased rate of Z application under both CF and AWD. Z10 increased soil NH4+-N by 27 %-38 % and NO3--N by 14 %-22 % in five years, compared to Z0, respectively. Compared to AWD without zeolite, the addition of 10 t ha-1 zeolite under AWD lowered NH3 volatilization, cumulative N2O emissions, and GWPN by an average of 28 %, 29 %, and 30 % in two years, respectively. IAWDZ10 did not differ from ICFZ0 on reactive gaseous N losses but significantly lowered reactive gaseous losses relative to IAWDZ0. Therefore, zeolite addition could mitigate the reactive gaseous N losses and GWPN for at least five years after initial application, which is beneficial to promoting zeolite application and ensuring sustainable agriculture.
科研通智能强力驱动
Strongly Powered by AbleSci AI