亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Motor progression phenotypes in early-stage Parkinson’s Disease: A clinical prediction model and the role of glymphatic system imaging biomarkers

列线图 接收机工作特性 曲线下面积 逻辑回归 帕金森病 医学 内科学 阶段(地层学) 物理医学与康复 心理学 疾病 古生物学 生物
作者
Peikun He,Yuyuan Gao,Lin Shi,Yanyi Li,Shuolin Jiang,Zihui Tie,Yihui Qiu,Guixian Ma,Yuhu Zhang,Kun Nie,Lijuan Wang
出处
期刊:Neuroscience Letters [Elsevier BV]
卷期号:814: 137435-137435 被引量:5
标识
DOI:10.1016/j.neulet.2023.137435
摘要

Substantial heterogeneity of motor symptoms in Parkinson's disease (PD) poses a challenge to disease prediction.The aim of this study was to construct a nomogram model that can distinguish different longitudinal trajectories of motor symptom changes in early-stage PD patients.Data on 90 patients with 5-years of follow-up were collected from the Parkinson's Progression Marker Initiative (PPMI) cohort. We used a latent class mixed modeling (LCMM) to identify distinct progression patterns of motor symptoms, and backward stepwise logistic regression with baseline information was conducted to identify the potential predictors for motor trajectory and to develop a nomogram. The performance of the nomogram model was then evaluated using the optimism-corrected C-index for internal validation, the area under the curve (AUC) of the receiver operating characteristic (ROC) curve for discrimination, the calibration curve for predictive accuracy, and decision curve analysis (DCA) for its clinical value.We identified two trajectories for motor progression patterns. The first, Class 1 (Motor deteriorated group), was characterized by sustained, continuously worsening motor symptoms, and the second, Class 2 (Motor stable group), had stable motor symptoms throughout the follow-up period. The best combination of 7 baseline variables was identified and assembled into the nomogram: Scopa-AUT [odds ratio (OR), 1.11; p = 0.091], Letter number sequencing (LNS) (OR, 0.76; p = 0.068), the asymmetry index of putamen (OR, 0.95; p = 0.034), mean caudate uptake (OR, 0.14; p = 0.086), CSF pTau/α-synuclein (OR, 0.00; p = 0.011), CSF tTau/Aβ (OR, 25434806; p = 0.025), and the index for diffusion tensor image analysis along the perivascular space (ALPS-index) (OR, 0.02; p = 0.030). The nomogram achieved good discrimination, with an original AUC of 0.901 (95% CI, 0.813-0.989), and the bias-corrected concordance index (C-index) with 1,000 bootstraps was 0.834. The calibration curve and DCA also suggested both the high accuracy and clinical usefulness of the nomogram, respectively.This study proposes an effective nomogram to predict different motor progression patterns in early-stage PD. Furthermore, the imaging biomarker indicating glymphatic function could be an independent predictive factor for PD motor progression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现代送终发布了新的文献求助10
2秒前
3秒前
Owen应助筱簋采纳,获得10
4秒前
馆长应助keyandog采纳,获得30
10秒前
贪玩从云发布了新的文献求助10
18秒前
听风完成签到 ,获得积分10
20秒前
30秒前
量子星尘发布了新的文献求助10
42秒前
43秒前
alanbike发布了新的文献求助30
48秒前
alanbike完成签到,获得积分10
54秒前
悸颜完成签到 ,获得积分10
55秒前
温馨完成签到 ,获得积分10
57秒前
悸颜关注了科研通微信公众号
59秒前
59秒前
AA完成签到 ,获得积分10
1分钟前
Ldq完成签到 ,获得积分10
1分钟前
匿名网友完成签到 ,获得积分10
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
veinard发布了新的文献求助10
1分钟前
cqhecq完成签到,获得积分10
1分钟前
酷酷的笔记本完成签到,获得积分10
1分钟前
必发文章完成签到,获得积分20
1分钟前
1分钟前
必发文章发布了新的文献求助30
1分钟前
烨枫晨曦完成签到,获得积分10
1分钟前
小花小宝和阿飞完成签到 ,获得积分10
1分钟前
小白发布了新的文献求助10
1分钟前
斯文败类应助橘子汽水采纳,获得10
1分钟前
1分钟前
三年六班李子明完成签到 ,获得积分10
2分钟前
2分钟前
默默的紫真完成签到,获得积分20
2分钟前
2分钟前
2分钟前
2分钟前
WJY完成签到,获得积分20
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4957910
求助须知:如何正确求助?哪些是违规求助? 4219108
关于积分的说明 13132974
捐赠科研通 4002147
什么是DOI,文献DOI怎么找? 2190234
邀请新用户注册赠送积分活动 1204989
关于科研通互助平台的介绍 1116613