亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Motor progression phenotypes in early-stage Parkinson’s Disease: A clinical prediction model and the role of glymphatic system imaging biomarkers

列线图 接收机工作特性 曲线下面积 逻辑回归 帕金森病 医学 内科学 阶段(地层学) 物理医学与康复 心理学 疾病 古生物学 生物
作者
Peikun He,Yuyuan Gao,Lin Shi,Yanyi Li,Shuolin Jiang,Zihui Tie,Yihui Qiu,Guixian Ma,Yuhu Zhang,Kun Nie,Lijuan Wang
出处
期刊:Neuroscience Letters [Elsevier]
卷期号:814: 137435-137435 被引量:5
标识
DOI:10.1016/j.neulet.2023.137435
摘要

Substantial heterogeneity of motor symptoms in Parkinson's disease (PD) poses a challenge to disease prediction.The aim of this study was to construct a nomogram model that can distinguish different longitudinal trajectories of motor symptom changes in early-stage PD patients.Data on 90 patients with 5-years of follow-up were collected from the Parkinson's Progression Marker Initiative (PPMI) cohort. We used a latent class mixed modeling (LCMM) to identify distinct progression patterns of motor symptoms, and backward stepwise logistic regression with baseline information was conducted to identify the potential predictors for motor trajectory and to develop a nomogram. The performance of the nomogram model was then evaluated using the optimism-corrected C-index for internal validation, the area under the curve (AUC) of the receiver operating characteristic (ROC) curve for discrimination, the calibration curve for predictive accuracy, and decision curve analysis (DCA) for its clinical value.We identified two trajectories for motor progression patterns. The first, Class 1 (Motor deteriorated group), was characterized by sustained, continuously worsening motor symptoms, and the second, Class 2 (Motor stable group), had stable motor symptoms throughout the follow-up period. The best combination of 7 baseline variables was identified and assembled into the nomogram: Scopa-AUT [odds ratio (OR), 1.11; p = 0.091], Letter number sequencing (LNS) (OR, 0.76; p = 0.068), the asymmetry index of putamen (OR, 0.95; p = 0.034), mean caudate uptake (OR, 0.14; p = 0.086), CSF pTau/α-synuclein (OR, 0.00; p = 0.011), CSF tTau/Aβ (OR, 25434806; p = 0.025), and the index for diffusion tensor image analysis along the perivascular space (ALPS-index) (OR, 0.02; p = 0.030). The nomogram achieved good discrimination, with an original AUC of 0.901 (95% CI, 0.813-0.989), and the bias-corrected concordance index (C-index) with 1,000 bootstraps was 0.834. The calibration curve and DCA also suggested both the high accuracy and clinical usefulness of the nomogram, respectively.This study proposes an effective nomogram to predict different motor progression patterns in early-stage PD. Furthermore, the imaging biomarker indicating glymphatic function could be an independent predictive factor for PD motor progression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
13秒前
23秒前
啦啦啦发布了新的文献求助10
26秒前
ding应助若宫伊芙采纳,获得30
30秒前
31秒前
研友_8WbP4Z发布了新的文献求助10
37秒前
啦啦啦完成签到,获得积分10
44秒前
1分钟前
1分钟前
lyw发布了新的文献求助10
1分钟前
1分钟前
啦啦啦啦发布了新的文献求助10
1分钟前
1分钟前
平常囧完成签到,获得积分10
1分钟前
若宫伊芙发布了新的文献求助30
1分钟前
1分钟前
1分钟前
Jenny发布了新的文献求助10
1分钟前
田様应助小飞鼠爱丽丝采纳,获得10
1分钟前
景清发布了新的文献求助10
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
ZanE完成签到,获得积分10
1分钟前
科目三应助简单的银耳汤采纳,获得10
1分钟前
CJH104完成签到 ,获得积分10
1分钟前
景清完成签到,获得积分10
2分钟前
义气的元绿完成签到,获得积分10
2分钟前
粗暴的坤发布了新的文献求助10
2分钟前
2分钟前
2分钟前
nihao完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI6.1应助jyy采纳,获得10
2分钟前
王越发布了新的文献求助10
2分钟前
闪闪的诗珊应助ceeray23采纳,获得20
2分钟前
研友_VZG7GZ应助湫栗采纳,获得10
2分钟前
小马甲应助yunshui采纳,获得10
2分钟前
支雨泽完成签到,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788463
求助须知:如何正确求助?哪些是违规求助? 5707949
关于积分的说明 15473556
捐赠科研通 4916510
什么是DOI,文献DOI怎么找? 2646405
邀请新用户注册赠送积分活动 1594077
关于科研通互助平台的介绍 1548491