Motor progression phenotypes in early-stage Parkinson’s Disease: A clinical prediction model and the role of glymphatic system imaging biomarkers

列线图 接收机工作特性 曲线下面积 逻辑回归 帕金森病 医学 内科学 阶段(地层学) 物理医学与康复 心理学 疾病 古生物学 生物
作者
Peikun He,Yuyuan Gao,Lin Shi,Yanyi Li,Shuolin Jiang,Zihui Tie,Yihui Qiu,Guixian Ma,Yuhu Zhang,Kun Nie,Lijuan Wang
出处
期刊:Neuroscience Letters [Elsevier]
卷期号:814: 137435-137435 被引量:5
标识
DOI:10.1016/j.neulet.2023.137435
摘要

Substantial heterogeneity of motor symptoms in Parkinson's disease (PD) poses a challenge to disease prediction.The aim of this study was to construct a nomogram model that can distinguish different longitudinal trajectories of motor symptom changes in early-stage PD patients.Data on 90 patients with 5-years of follow-up were collected from the Parkinson's Progression Marker Initiative (PPMI) cohort. We used a latent class mixed modeling (LCMM) to identify distinct progression patterns of motor symptoms, and backward stepwise logistic regression with baseline information was conducted to identify the potential predictors for motor trajectory and to develop a nomogram. The performance of the nomogram model was then evaluated using the optimism-corrected C-index for internal validation, the area under the curve (AUC) of the receiver operating characteristic (ROC) curve for discrimination, the calibration curve for predictive accuracy, and decision curve analysis (DCA) for its clinical value.We identified two trajectories for motor progression patterns. The first, Class 1 (Motor deteriorated group), was characterized by sustained, continuously worsening motor symptoms, and the second, Class 2 (Motor stable group), had stable motor symptoms throughout the follow-up period. The best combination of 7 baseline variables was identified and assembled into the nomogram: Scopa-AUT [odds ratio (OR), 1.11; p = 0.091], Letter number sequencing (LNS) (OR, 0.76; p = 0.068), the asymmetry index of putamen (OR, 0.95; p = 0.034), mean caudate uptake (OR, 0.14; p = 0.086), CSF pTau/α-synuclein (OR, 0.00; p = 0.011), CSF tTau/Aβ (OR, 25434806; p = 0.025), and the index for diffusion tensor image analysis along the perivascular space (ALPS-index) (OR, 0.02; p = 0.030). The nomogram achieved good discrimination, with an original AUC of 0.901 (95% CI, 0.813-0.989), and the bias-corrected concordance index (C-index) with 1,000 bootstraps was 0.834. The calibration curve and DCA also suggested both the high accuracy and clinical usefulness of the nomogram, respectively.This study proposes an effective nomogram to predict different motor progression patterns in early-stage PD. Furthermore, the imaging biomarker indicating glymphatic function could be an independent predictive factor for PD motor progression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
冂xx易云完成签到,获得积分10
4秒前
嬴政飞发布了新的文献求助10
4秒前
苏苏完成签到,获得积分10
5秒前
5秒前
lpk完成签到,获得积分10
5秒前
科研通AI6应助guyutang采纳,获得20
6秒前
6秒前
8秒前
qiuli发布了新的文献求助10
9秒前
10秒前
hh完成签到,获得积分20
10秒前
儒雅的蜜粉完成签到,获得积分10
11秒前
shufessm完成签到,获得积分0
12秒前
寇博翔发布了新的文献求助10
13秒前
hh发布了新的文献求助10
13秒前
寻绿完成签到,获得积分10
14秒前
cora完成签到 ,获得积分10
19秒前
万能图书馆应助海蓝博采纳,获得10
21秒前
22秒前
lpk发布了新的文献求助10
22秒前
27秒前
28秒前
29秒前
豪哥发布了新的文献求助10
29秒前
褪色完成签到,获得积分10
29秒前
xiaoyu完成签到,获得积分10
29秒前
29秒前
ljy发布了新的文献求助10
30秒前
Auh完成签到,获得积分10
31秒前
海蓝博发布了新的文献求助10
33秒前
33秒前
cjg完成签到,获得积分10
33秒前
绿野仙踪发布了新的文献求助10
34秒前
35秒前
LOMO发布了新的文献求助10
35秒前
隐形曼青应助向上采纳,获得10
35秒前
cxb完成签到,获得积分10
36秒前
38秒前
Lucas应助ljy采纳,获得10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563681
求助须知:如何正确求助?哪些是违规求助? 4648553
关于积分的说明 14685532
捐赠科研通 4590511
什么是DOI,文献DOI怎么找? 2518648
邀请新用户注册赠送积分活动 1491204
关于科研通互助平台的介绍 1462478