Exploration of pyroptosis-associated prognostic gene signature and lncRNA regulatory network in ovarian cancer

上睑下垂 列线图 肿瘤科 比例危险模型 医学 内科学 阶段(地层学) 卵巢癌 目标2 癌症 生物信息学 生物 炎症体 古生物学 炎症
作者
Beilei Zhang,Zhanghang Li,Kunqin Wang,Duan Ming-ke,Yidan Yin,Qirui Zhan,Fu Wang,Ruifang An
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:164: 107343-107343 被引量:5
标识
DOI:10.1016/j.compbiomed.2023.107343
摘要

Ovarian cancer (OC), is a tumor that poses a serious threat to women's health due to its high mortality rate and bleak prognosis. Pyroptosis, a type of programmed cell death, is important for determining the prognosis of a patient's prognosis for cancer and may represent a novel target for treatment. However, research into how prognosis is impacted by pyroptosis-related genes (PRGs) is poorly understood. In this study, a prognostic model was created using bioinformatic analysis of PRGs in OC. In OC, we discovered 18 pyroptosis regulators that were either up- or down-regulated. By analyzing prognoses, we developed a 9-genes based prognostic model. Each OC patient received a risk score that could be used to categorize them into two subgroups: those with high risk and/or low chance of survival and those with low risk and/or high chance of survival. Functional enrichment and immunoinfiltration analysis indicated that low expression of immune pathways in high-risk group may account for the decrease of survival possibility. In Multivariable cox regression studies, age, clinical stage and the prognostic model were discovered to be independent factors impacting the prognosis for OC. To forecast OC patient survival, a predictive nomogram was developed. Furthermore, we found a correlation between predictive PRGs and clinical stage, indicating that AIM2, CASP3, ZBP1 and CASP8 may play a role in the growth of tumor in OC. After detailed and complete bioinformatics analysis, the lncRNA RP11-186B7.4/hsa-miR-449a/CASP8/AIM2/ZBP1 regulatory axis was identified in OC. Our study may provide a novel approach for prognostic biomarkers and therapeutic targets of OC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
何博洋完成签到,获得积分10
1秒前
可爱的函函应助粗暴的遥采纳,获得10
1秒前
yjw发布了新的文献求助10
2秒前
脑洞疼应助kang12采纳,获得10
8秒前
伶俐的冰之完成签到,获得积分10
10秒前
亦巧完成签到,获得积分20
11秒前
14秒前
soapffz完成签到,获得积分10
18秒前
小吴同志完成签到,获得积分10
19秒前
畅快不平发布了新的文献求助10
21秒前
隐形紫萍发布了新的文献求助10
23秒前
24秒前
斯文败类应助zwenng采纳,获得10
25秒前
哈哈哈哈完成签到 ,获得积分10
26秒前
CodeCraft应助胡桃夹馍采纳,获得10
26秒前
28秒前
pragmatic发布了新的文献求助10
29秒前
何仙姑完成签到 ,获得积分10
30秒前
爱撒娇的孤丹完成签到 ,获得积分10
31秒前
31秒前
风趣烧鹅完成签到,获得积分10
31秒前
激动的猫咪完成签到,获得积分20
32秒前
Charon发布了新的文献求助10
32秒前
怕黑访云完成签到,获得积分10
34秒前
yanjiusheng完成签到,获得积分10
35秒前
zwenng发布了新的文献求助10
37秒前
受伤破茧完成签到,获得积分10
37秒前
bbll完成签到,获得积分10
37秒前
老迟到的元霜完成签到,获得积分10
38秒前
BMII完成签到,获得积分10
38秒前
123应助nowfitness采纳,获得10
39秒前
加菲丰丰应助WDD采纳,获得20
40秒前
42秒前
42秒前
42秒前
胡桃夹馍发布了新的文献求助10
45秒前
Green发布了新的文献求助10
47秒前
菜大炮发布了新的文献求助10
48秒前
爆米花应助purejun采纳,获得10
49秒前
不配.应助海边的曼彻斯特采纳,获得50
50秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141402
求助须知:如何正确求助?哪些是违规求助? 2792438
关于积分的说明 7802634
捐赠科研通 2448628
什么是DOI,文献DOI怎么找? 1302644
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237