Efficient and Privacy-Preserving Cloud-Based Medical Diagnosis Using an Ensemble Classifier With Inherent Access Control and Micro-Payment

计算机科学 云计算 架空(工程) 访问控制 安全多方计算 数据挖掘 分类器(UML) 计算机安全 密码学 人工智能 操作系统
作者
Sherif Abdelfattah,Mahmoud M. Badr,Mohamed Mahmoud,Khalid Abualsaud,Elias Yaacoub,Mohsen Guizani
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (24): 22096-22110 被引量:3
标识
DOI:10.1109/jiot.2023.3303429
摘要

Decision tree (DT) models are widely used in medical applications where the size of the data sets is usually small or medium. Moreover, DT ensemble models are preferred over single DT models because of their higher accuracy in spite of the need for more overhead due to using multiple trees. Several schemes have been proposed for privacy-preserving cloud-based medical diagnosis using ensemble models. However, these schemes suffer from several limitations. First, they suffer from high computation/communication overheads due to using inefficient public-key cryptosystems. Second, none of them can simultaneously protect the intellectual property of the model and preserve the privacy of the patients’ data and diagnosis results. Finally, they do not provide inherent access control for the outsourced model and micropayment, in which only the registered patients can use the model and pay for the service. In this article, we develop a lightweight and privacy-preserving cloud-based medical diagnosis scheme using ensemble models with high accuracy and acceptable overhead. Using our scheme, the model owner can control the patients who can use the model. Also, for each classification operation, patients must make a micro-payment to pay for the diagnosis service. Our analysis indicates that our scheme can protect the model’s intellectual property and diagnose diseases without leaking any sensitive information about the patients’ medical data and the diagnosis results. Our experimental results demonstrate that our scheme requires less communication/computation overhead compared to the existing schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
在水一方应助sun采纳,获得10
3秒前
爱听歌的白羊完成签到,获得积分10
3秒前
4秒前
11发布了新的文献求助10
4秒前
4秒前
5秒前
周游发布了新的文献求助10
6秒前
斯人完成签到,获得积分10
6秒前
爱听歌的梦易完成签到 ,获得积分10
7秒前
慕青应助迷人的寄容采纳,获得10
7秒前
7秒前
9秒前
执梳完成签到 ,获得积分10
10秒前
无情的宛菡完成签到 ,获得积分10
10秒前
DIngqin应助迟雨烟暮采纳,获得20
10秒前
梓i木发布了新的文献求助10
10秒前
SPark发布了新的文献求助10
12秒前
15秒前
15秒前
豪士赋发布了新的文献求助10
16秒前
17秒前
shime完成签到,获得积分10
20秒前
20秒前
Syuu发布了新的文献求助10
21秒前
23秒前
23秒前
24秒前
拉贝洛尔发布了新的文献求助10
24秒前
Lee发布了新的文献求助20
25秒前
25秒前
sun发布了新的文献求助10
26秒前
27秒前
十万嘻皮发布了新的文献求助10
29秒前
白菜包子发布了新的文献求助10
30秒前
31秒前
31秒前
淡淡的小蜜蜂完成签到,获得积分10
31秒前
32秒前
高分求助中
Drug Prescribing in Renal Failure: Dosing Guidelines for Adults and Children 5th Edition 2000
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 500
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3712091
求助须知:如何正确求助?哪些是违规求助? 3260294
关于积分的说明 9913510
捐赠科研通 2973623
什么是DOI,文献DOI怎么找? 1630739
邀请新用户注册赠送积分活动 773566
科研通“疑难数据库(出版商)”最低求助积分说明 744314